

International Journal of Engineering Research and Generic Science (IJERGS) Available online at: https://www.ijergs.in

Volume - 7, Issue - 6, November - December - 2021, Page No. 44 - 51

A Study on FEM Analysis of Turning operation using Deform 3D

¹Sushil Kumar, M. Tech Student, Department of Mechanical Engineering, Jaipur Engineering College, Kukas, Jaipur, Rajasthan

²Prashant Kumar, Assistant Professor, Department of Mechanical Engineering, Jaipur Engineering College, Kukas, Jaipur, Rajasthan

³Vinay Kumar Meena, Assistant Professor, Department of Mechanical Engineering, Jaipur Engineering College, Kukas, Jaipur, Rajasthan

Abstract

T Finite Element Analysis seems to be a technique of simulating the loading conditions in such a design and determining the design's response. The design is modelled with the so-called components of discrete building pieces. Every element contains specific formulae describing how such a given load reacts. The overall response from all the elements in the model is the "summary." The elements have such a finite amount of unknowns, which is why the term is Finite. The finite element model, having a limitless number of unknowns, only can approximate the physical system's reaction that contains endless unknowns.FEM has certain advantages, like solving contact issues, using bodies manufactured using various materials, approximating a curved region using finite elements or accurately describing, etc.

This study will highlight the effect of the temperature and cutting forces generated on the Single Point Cutting Tool (SPCT) tip while working.

Keywords: FEM, AISI, SPCT, 3D

Introduction

Finite Element Analysis seems to be a technique of simulating the loading conditions in such a design and determining the design's response. Turning application is found in machining method, a product removal technique used to obtain rotational components by cutting away unwanted material as shown in figure1. This turning technique needs a turning device or lathe, the task, fixture, and cutting tool. The job is a piece of pre-shaped substance connected to the fixture, which it though several operations, benefit from multi-point tools. The cutting device feeds into the rotating workpiece and cuts material in tiny chips to generate the required shape. Self-attached with the turning device and permitted to rotate with higher speeds. The cutter generally is just a single-point cutting tool that is also connected to the device.

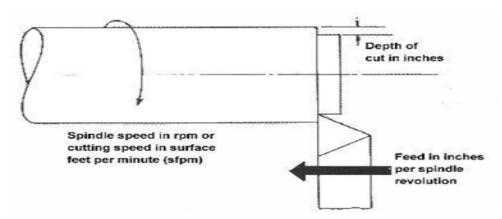


Figure 1: Turning Process

There are numerous applications for this method, including the creation of rotatable components with a wide range of features such as grooves, threads, holes, tapers and curved surfaces. Custom-designed shafts and fasteners are examples of parts that can be used in limited quantities, perhaps for prototype purposes, in components made entirely through turning. Turning can also be commonly used as another method to add or improve qualities on components that have been manufactured employing a different process. Due to the greater tolerances and surface finishes this turning can offer, this is superb for including rotational accuracy functions to the factor where the standard shape had been formed.

Cutting Tool Materials

Choosing the right cutting tool material for a certain application is essential to ensuring successful operations. Shortening the tool life, increasing tool re-grinding/replacement expenses, and increasing production interruptions are all consequences of increasing the cutting speed.

There is no substance that meets all of the requirements. Because of the characteristics required by cutting instruments, it is important to make concessions. For example, increased hardness almost always results in a decrease in toughness and vice versa.

The Perfect cutting tool material needs to have all the following features:

- Harder compared to its cutting
- o Temperature stability
- o Avoids wear and thermal shock
- o Impact-resistant Chemically inert to the task material and cutting fluid

To effectively choose tools for machining, a machinist or engineer should have specific details about:

- First and finished part shape
- o Job piece hardness
- o Material's tensile strength
- Material's abrasiveness
- o The kind of chip generated
- Job holding setup

o Power and speed capacity of the machine tool

Figure 2: Shapes of Turning Cutting Tool

Literature Review

Pytlaket al. [4]developed a multi-criteria optimization approach for hard turning of 18 HGT steel that was both efficient and accurate. The geometry of CBN inserts was used in this application. The associated parameters depth of cut, feed rate, and cutting speed were taken into account in the model. The minimization of manufacturing cost time per item as well as the resulting cutting force in the machining operation were the optimization criteria. To construct Pareto sets of arrangements, the weighted objectives methodology and the modified distance method were used in conjunction. A variety of levelled strategies were employed in order to ensure that production costs were kept low and that cutting forces received minimal benefits.

Sieben et al. [5]Using design and analysis of computer experiments (DACE) for experimental testing in the hard turning process of AISI 6150 steel, Sieben and colleagues developed a new method for hard turning of steel. This was accomplished through the use of the PCBN tool. Feed, depth of cut, and cutting speed were the distinguishing characteristics that were chosen. The DACE technique can be used to demonstrate non-linear components that are complicated in nature.

Cappellini et al. [6] who used AISI 52100 discs for this purpose. PCBN inserts were made possible because of this. As the temperature climbs over the austenizing point, the martensite is immediately extinguished and a white layer is created. Cutting speed and foot pace were the main considerations. Images from a scanning electron microscope show white layers shaped like spheres (SEM). The thickness of the layers also grew with wear and tear of the device, as was seen. When the speed or feed rate was raised, thicker white layers were formed and more thin dim layers were developed.

Selvaraj et al [7] Utilised AISI 304 Austenitic stainless steel to study the impact of cutting parameters on the surface roughness. An arrangement of investigations in light of Taguchi's technique has been utilised to gain the information. Signal to noise (S/N) ratio i.e. lower-the-better and ANOVA analysis have been performed to research the cutting

attributes of AISI 304 austenitic stainless steel bars utilising TiC and TiCN coated tungsten carbide cutting tool. At last the confirmation tests that have been completed to contrast the predicted values with the experimental values its adequacy in the examination of surface roughness.

Ramanujam et al. [8]develoed a new approach for the improvement of machining characteristics on Al-15 percent SiCp metal lattice composites was presented by Ramanujam and colleagues. An examination known as desire function analysis was used to complete the process of improving machining parameters. The L27 orthogonal array developed by Taguchi is used in the test plan. The machining process parameters are optimised based on a number of performance concerns, the most important of which are surface roughness and energy consumption. The ideal machining parameters have been identified as the execution record by a composite desirability value derived from desire function analysis, and the substantial contribution of parameters may then be regulated through the use of analysis of variance. In addition, a confirmation test is conducted in order to approve the test outcome. The results of the tests have showed that the machining performance can be significantly improved by employing this method.

Kumaar et al. [9]In order to optimise surface roughness and flank wear in the last stages of turning, Inconel 718 was used. Cutting tests were carried out under dry cutting conditions in accordance with the entire factorial framework. Investigations were conducted into the effects of turning process parameters on the surface roughness and flank wear of turned parts. In order to determine the association between the cutting parameters and the performance measurements, a non-linear regression analysis was performed. For the tuning and facing procedures, Taguchi's optimisation research indicates that the degree of the parameters, as well as their significance, have an impact on the surface roughness and flank wear. Confirmation tests were carried out under optimal conditions in order to create a comparison between the experimental results predicted by the correlations indicated above and the actual results.

Yanda, et al. [10]When turning malleable cast iron FCD700 grade with a TiN covered cutting device in a dry climate, examine the impact of cutting velocity, feed rate, and profundity of cut on material expulsion rate (MRR), surface harshness, and apparatus life. With the depth of cut (DOC) being constant throughout the machining conditions, cutting speeds of 220, 300 or 360 M/min, feed rates of 0.22, 0.3 or 0.5 mm/rev, and a depth of cut (DOC) of 2 mm were employed. The effect of cutting circumstances (cutting speed and feed rate) on MRR, surface roughness, and tool life was studied and analysed. The MRR, surface roughness, and tool life were all measured. An orthogonal L9 array with a Taguchi design of experiments was utilised to conduct the tests, which were then optimised using ANOVA to find the best MRR, the lowest surface roughness, and the longest tool life achievable. It was discovered that increasing the cutting speed and feed rate to high values resulted in the best MRR. The best tool life, on the other hand, was obtained when the cutting speed and feed rate were adjusted to the lowest levels that could be predicted under the conditions. Surface polish was obtained by cutting at a fast cutting speed while maintaining a low feed rate.

Mittal et al. [11]A standard lathe's ability to turn titanium grade 2 is being tested for its effect on process variables. Spindle speed, cut depth, and feed rate are the three variables that have been tweaked to see what effect they have on material removal rate and tool failure. A single factor is examined at a time, with each component tested independently.

For the purpose of investigating tool failure, a few random tests are also sent out to recipients. Each of the three process parameters evaluated has a distinct effect on the removal rate of material, as the inquiry has discovered. In contrast, the impact of spindle speed and feed rate is greater than that of cut depth. In order to carry out further research, it has been found that the ideal range of input parameters has been identified.

Pahdaet al. [12]In order to determine surface roughness, cutting characteristics such as cutting speed, feed rate, and depth of cut were taken into consideration. In this experiment, the CNC turning machine is used to conduct tests on EN-8 steel with dimensions of 150 mm in length and 35 mm in diameter. The Taguchi technique has been used to design and optimise the inquiry, and it has proven to be effective. Furthermore, the Minitab 16 programme is being used to run ANOVA tests in order to forecast the significant level for each individual parameter. A new study has found that cutting speed is the most critical factor in determining surface roughness, with depth of cut taking second place. Following the Taguchi technique's guidelines, a confirmatory experiment verified the significance of these findings.

Velliboret al. [13]Dry single-point turning of cold rolled alloy steel 42CrMo4/AISI 4140 with TiN-covered tungsten carbide inserts demonstrated Taguchi resilient parameter design for displaying and optimising surface roughness. There were three cutting parameters used in the investigation: cutting speed (80, 110, 140 m/min), feed rate (0.071;0.2196;0.321 mm/rev), and the depth of cut (0.5; 1.25;2 mm). The average roughness of the surface (Ra) was used as a quality indicator. The experiment was designed and completed based on standard L27 Taguchi orthogonal array. The data set from the experiment was utilised for conducting the improvement methodology, as indicated by the standards of the Taguchi method. The results of calculations were in good agreement with the experimental data. A certain discrepancy between the trial results and computations could be deciphered as the presence of measurement errors, many irregularities and deficiencies in the turning process as well as environmental effects.

Adeel et al [14] During numerous experimental runs, Taguchi can be comfortably optimised for cutting settings. Taguchi parameter design may improve performance properties using design parameter values, and decrease system performance sensitivity to variation source. But at the other hand, the main factors and relative influence were identified.

Finite Element Analysis of Turning Process

Finite element analyses are a most effective and precise way for identifying field variables, made feasible by advances in computer computing and processing capacity and thus nearly utilised in recent years in all computer-aided design approaches. Applications include heat flux, fluid flow, magnetic flux, filtration, and other flux problems from deformation and stress analysis. This analytical technique discovered a complicated area that defines a continuum as primary geometric forms termed finite elements. The present study was also based on finite element use for thermal analysis of a single-point cutting tool. Once the single-point cutting tool template is established, it is also suitable for other multi-point operations, such as boiling, friction, and grinding.

3D cuts are a continuous field of research effort because of substantial cost reductions and give insights into the mechanism that is not easy to evaluate in tests, utilising finite element approaches. In addition, heat transmission and cutting process modelling need to be carefully considered in every modelling work.

Why is FEA needed

- Computer simulation allows several "what-if" scenarios to be rapidly and efficiently examined to decrease the quantity of prototype testing.
- To mimic designs during prototype testing, including artificial knee surgery implants. Example:
- Bottom line: -Cost savings -Savings in time -Saving time on the market! -Creating more dependable designs that
 are higher in quality.

FEM to designers

- Applied easy to complicated, irregular objects with various materials and complex boundary conditions.
- Eigen Value issues, applied to stable time dependant.
- For linear and non-linear issues applicable.
- Amounts of FEM packages were accessible for specific purposes.
- CAD applications for Solid modelling and mesh generators may be linked to the FEM software.
- Many FEM software packages have graphical and automatic interfaces. Automakers and advanced post processors
 help speed up the analyses and make the pre and after process user-friendly.

Results and Discussion

This paper describes the details of Finite element analyses of turning process with previous research as per various researchers. This also gives the need of FEM and role of designer for FEM. The Finite Element Method (FEM) allows the prediction of cutting forces, stresses, wear of the tool and cutting process temperatures to still be developed for the cutting instrument. FEM has certain advantages, like solving contact issues, using bodies manufactured using various materials, approximating a curved region using finite elements or accurately describing, etc.

Scope for Future Work

In this current investigation, just three parameters have been investigated in terms of their effects on the outcome of the experiment. Other aspects, such as the nose radius, the types of inserts used, the cutting circumstances (dry or wet), and so on, can be investigated. Additionally, various outputs like as power consumption, tool life, cutting forces, and so on, can be included.

References

- 1. A. Bareggi, G.E. O'Donnell, "Modeling Thermal Effects in Machining by Finite Element Methods", Proceedings of the 24th Int. Manu. Conf., Vol. 1, pp. 263–272, 2007.
- 2. A. Ginting, "Finite Element Method Applied on Metal Cutting: from Chip Formation to CoatingDelamination by Tribo-Energetic Approach", J. Teknologi Proses, Vol. 6, pp. 59-69, 2007.
- 3. J.S. Strenkowski and K.J. Moon, "Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Metal Cutting", ASME, J. of Eng. For Industry, Vol. 112, pp. 313-318, 1990.
- 4. Pytlak, B.; "Multicriteria optimisation of hard turning operation of the hardened 18HGT steel", International Journal Advance Manufacturing Technology, Volume 49: pp. 305-312, 2010.

- 5. Sieben, B., Wagner, T. and Biermann, D., "Empirical modelling of hard turning of AISI 6150 steel using design and analysis of computer experiments", Production Engineering Research Development, Volume 4: pp. 115 125, 2010
- 6. Cappellini, C., Attanasio, A., Rotella, G. and Umbrello, D., "Formation of dark and white layers in hard turning: influence of tool wear", International Journal of Material Forming, Volume 3 No.1: pp. 455 458, 2010.
- 7. D. Philip Selvaraj and P. Chandramohan, "Optimisation of surface roughness of AISI 304 Austenitic stainless steel in dry turning operation using Taguchi design method", Journal of Engineering Science and Technology, Volume 5, No. 3: pp 293-301, 2010.
- 8. R. Ramanujam, R. Raju, N. Muthukrishnan, "Taguchi-multi machining characteristics optimisation in turning of Al-15% SiCp composites using desirability function analysis", Journal of Studies on Manufacturing, Volume 1 Issue2-3: pp 120-125, 2010.
- 9. J. S. Senthil kumaar, P. Selvarani, RM. Arunachalam; (2010) "Selection of machining parameters based on the analysis of surface roughness and flank wear in finish turning and facing of Inconel 718 using Taguchi Technique", Emirates Journal for Engineering Research, Volume 15, No.2: pp 7-14. 2010.
- 10. H. Yanda, J.A. Ghani, M.N.A.M. Rodzi, K. Othman and C.H.C. Haron, "Optimisation of material removal rate, surface roughness and tool life on the conventional dry turning of FCD 700", International Journal of Mechanical and Materials Engineering, Volume 5 No. 2: pp 182-190, 2010.
- 11. D. Mittal, M.P. Garg and R. Khanna,"An investigation of the effect of the process parameters on MRR in turning of pure Titanium (Grade -2)", International Journal of Engineering Science & Technology, Volume 3 No. 8: pp 6345-6349, 2011.
- 12. S. Pahda, S. M Sharma, N. Malhotra, "Analysis of variance and Optimisation of surface roughness in CNC Turning of EN-8 steel by Taguchi method", International Journal of Advanced Engineering Technology, Volume 3 Issue 1: pp 264-267,2011.
- 13. M. Vellibor, M. Milos, "Optimisation of surface roughness in turning alloy steel by using Taguchi method", Scientific Research and Essays, Volume 6(16): pp 3474-3484, 2011.
- 14. Adeel H. Suhail, N. Ismail, S.V. Wong and N.A. Abdul Jalil, "Optimisation of Cutting Parameters Based on Surface Roughness and Assistance of Workpiece Surface Temperature in Turning Process", American J. of Engineering and Applied Sciences 3 (1): 102-108, 2010.
- 15. S. Khrais, A.M. Hassan, A. Gazawi, "Investigations into the turning parameters effect on the surface roughness of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts based on Taguchi techniques", Word Academy of Science, Engineering and Technology, pp 2137-2141, 2011.
- 16. U. K. Yadav, D. Narang, P.S. Attri, "Experimental investigation and optimisation of machining parameters for surface roughness in CNC turning by Taguchi method", International Journal of Engineering Research and Applications, Volume 2 Issue 4: pp 2060-2065, 2012.

- 17. M. V. Ramana, A. V. Vishnu, G. K.M. Rao, D.H. Rao, "Experimental investigations, optimisation of process parameters and mathematical modelling in turning of Titanium alloy under different lubricant conditions", Journal of Engineering, Vol. 2, Issue 1, pp 86-101,2012.
- 18. K. Hassan, A. Kumar, M.P. Garg, "Experimental investigation of Material removal rate in CNC turning using Taguchi method", International Journal of Engineering Research and Applications, Volume 2 Issue 2, pp 1581-1590, 2012.