



# International Journal of Engineering Research and Generic Science (IJERGS) Available online at: https://www.ijergs.in

Volume - 7, Issue - 1, January - February - 2021, Page No. 08 - 13

## Novel Approach IOT Missing Data Classification Using Artificial Neural Network

Monu Jain, M.Tech Scholar, Modern Institute of Technology & Research Centre Alwar

#### **Abstract**

Data created in the Internet of Things (IoT) space by sensors is experiencing data loss. Many events, inaccurate sensors, duplicates, faulty sensors, and other causes, will cause this data loss. This paper seeks to make choices recognising the data loss is present. As a promising approach, we used a neural network, taking into account the essence of the data we used. Classification of data are used in this papers and it is quickly increasing, classified, and can be lost due to the options described earlier. Therefore, we followed an approach to supervised learning that works best with labelled results. CNN, K-nearest neighbour (KNN), LSTM,naïve Bayes, support vector machine (SVM), were first technically tested as promising and possible method and algorithm for the use of data processing. Seeking a reliable form of waste disposal has been a difficulty.

**Keywords:** IOT, KNN, CNN LSTM, SVM.

#### Introduction

The latest industrial trend in automation and industrial plants is taking us to increasingly complex mechatronic processes, operating in an unpredictable, evolutionary environment. A diagnostic module must also be established to find the fault. The functioning of these structures may be compromised and their classified (Fault Isolation). Therefore, to increase the efficiency and competitiveness of processes and reduce the effects of failures that can be disastrous for human products and life, a diagnostic module is necessary. Diagnosis consists of the identification from sensor data of irregular functioning. Owing to unexpected occurrences, such data can be noisy or corrupt. Irregular functioning may involve failure of process machinery euipment such as sensor and compinent failure of the system of control (due to system operator error or cyber attack), or environmental change, such as lack of resources (inaccessible operators, depleted supplies, etc.), or failure of the control system. The trigger may then be found and identified after identifying irregular functioning to determine. The numerous fault forms are outlined in the process. There are two key approaches to fault diagnosis in the literature: approaches that use the system's analytical or physical model[1], and approaches that focus exclusively based on the ANN [2]. By providing less acceptable results, the use of diagnostic methods with models seems difficult and costly. In addition, there are many commercial uses where, Because of extra complexity and the development method, a model is difficult or impossible to procure. IoT software can provide end-users with a highquality service. In order to accomplish this purpose, high data distribution efficiency must be achieved to ensure that IoT applications are operating in a good way. Missing data would decrease IoT application efficiency and the consistency of the service delivered to end users. The imputation of lost data involves the discovery of an intelligent alternative. We suggested in this paper a genetic algorithm hybrid neural network to impute missing data from a medical IoT programme. The tests indicate that the proposed solution will improve the efficiency of 2 percent of the IoT application. In our future work, we will explore the neural network structure to be a complex model that suits any IoT applications.

#### **Related Work**

As far as we know, there is no article in the literature which discusses the basic relationship between IoT data and DL as well as DL method implementations in IoT. Several works struggle with conventional data mining and deep learning approaches in IoT environments. The work was based on IoT approaches to data mining. It presented a range of IoT infrastructure and utilities classification, classification and frequent model mining algorithms. But DL approaches, which is the subject of our survey, have not been considered by the job. The emphasis is mainly on offline data mining, whereas studying and mining in real time (i.e. fast) as well as major knowledge processing are also considered.

- N. Al-Milli et al[1]In this article, we are proposing a hybrid genetic algorithm for the neural network to indicate the absence of the IOT base application. The classification of faults is depend on the threshold test of residues produced by subtracting from the corresponding output of the actual device, each neural model output.
- S. Karimi-Bidhendi et al[2]Our protocol provides competitive preparation and estimation outcomes in the UTS case with superior results for MTS datasets. In the face of variable longitudinally lacking data points, our technology is robust and well scales with the size of the dataset, unlike many published results.
- I. Mehmood et al., et al[3]The method uses a cost-effective pre-trained CNN model with specified features to depict the face with convolutionary layers. The following are indexed features of the Big Data registry to achieve a quick matching method for retrieval in real time.
- A. Walinjkar et al.[4]The research work outlined at the outset of this paper centred on the ongoing tracking of ECG readings with a portable 3-lead ECG package, and more specifically on carrying out realtime analyses in which arrhythmia can be identified and predicted to identify heart danger.
- Johnson I. Agbinya et. al[5]The research work outlined at the outset of this paper centred on the ongoing tracking of ECG readings with a portable 3-lead ECG package, and more specifically on carrying out realtime analyses in which arrhythmia can be identified and predicted to identify heart danger.
- S. Wei, et al[6]In this article the most common strategies for the detection of diabetes and data preprocessing approaches are discussed extensivamente (e.g. DNN (Deep Neural Network), SVM (Support Vector Machine), etc.). Basically, the precision of cross-validation on the Pima Indian data set is tested through these techniques.
- Yen, N.Y., et al[7]The main aim of the IOT is intelligent control, information identification and location surveillance are the core features of the Internet of Things. They belong, from a market viewpoint, to the vertical application model, the public sector model and the traditional web model of the industry. The vertical implementation is for enterprise to be carried out by a single organisation or sector. It serves the needs of certain particular companies and sectors, such as power, gasoline, road and rail enterprise applications[2]. In the business sector, such as e-commerce, consulting and public transit administration, the public service paradigm is utilised. A typical business model is a type of industry and its associated companies and businesses, such as medical and logistics-related fields.

Manquele et al [8] The Internet of Things (IoT) architecture's data and data processing area requires the consistency and precision of streaming data decision-making. One of the key types of IoT data production is streaming data and it has particular analytics criteria. The essence of IOT are data are used to transfer to the suffer a substantial loss of data. Data loss may be triggered by different causes, limitations (failure or slow down), defective sensors, duplicates, inaccurate

sensors, and other variables. While current data are transfer and exist, the concern persists as to how detailed and reliable these choices are, provided that data may be lost.

### **Proposed Methodology**

The ANN artificial neural network is a versatile method capable of conducting classification and forecasting operations. Weighted directed graphs ANN, the neurons are nodes, and the relations between the nodes are weighted. In order to follow the optimal behaviour, this study modifies weights and activation functions. Two forms of learning exist: supervised and unattended. [8].

Supervised learning: Define synaptic weights is the goal of the tagged instances. In order to minimise the error between the desired result (supplied by the expert) and the actual network results, this modifies network parameters. An example of an algorithm for supervised learning[9] is reverse propagation. -Unsupervised learning: the desired output information is not included in the input data; and output data based according to rule of the neural network parameters on the basis of the input data. The Hopfield Nets explanation is the Associative Memory Training Algorithm With the use of chance methods, Hopfield Nets were used to detect various faulty behaviour in analogue circuits. The loss series is then quantified and orthogonalized to the Hopfield quantum neural network. The Structure Method gives strong explanation of the probability of several errors.

In [12], the based on the fault identification and insulation (FDI)of the neural network scheme is introduced to identify and neural network in the extremely non-linear dynamics of the aircraft jet engine. Defect identification and insulation systems are merge of the ANN or parallel filter system, referring to the different modes of operation of safe and defective engine conditions. Using the residuals produced Measuring the disparity by measuring between the performance to the network and the calculated output of the image, various parameters are defined to perform the fault diagnostic task, which is to resolve fault detection problems and insulation of the system components. The innovative solution suggested in To replicate normal system behaviour and other model is represent various situations of malfunction, it is to create a neural model. The neural models are then mounted in conjunction with the device to be tracked, and the identification of Faults are generated by contrasting the outputs of the neural networks with the actual outputs of the machine. To evaluate the traces, the Bayesian network is used. The strength of the ANN is its potential for trends to be approximated and understood. They also shown valuable potential in diagnostic applications in environments usually making convergence slow during training and vulnerable to over-fitting, and to avoid this issue requires a large, diversified set of training data.

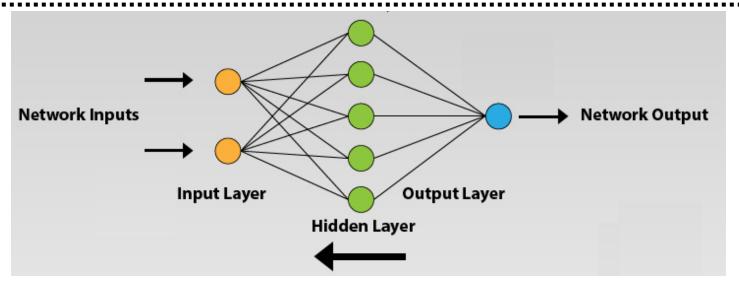



Figure 1: Neural Models

BN is an important model of the mathematical numerous ambiguity issues on the basis of probabilistic showing the interface of information. BN is a neural network which, through a guided acyclic graph, describes a collection of dependencies. Such a network is made up of qualitative and quantitative parts. A cyclic graph in which nodes reflect system variables is a qualitative part, so arcs symbolise dependence or relationship between cause and effect between variables. The probabilistic conditional table that determines the connection between the node and its relatives, is the quantitative part. For BNs, fault diagnostic methods. Defect Detection and Confirmation and Verification. Several approaches have been documented in the development of BN structure models for fault diagnosis, the mapping of algorithms or the structuring of learning are three main approaches. Furthermore, the parameters are the root nodes' prior likelihood and the leaf nodes' conditional probability. Expert results, knowledge and statistical impact of historical, simulation and experimental information can be used to derive these probabilities.

#### Conclusion and future work

In this article, we suggested a general approach to the adaptation of neural networks to the processing of incomplete data, which could be used to train data sets containing only incomplete samples. Our approach provides an input layer for the retrieval of missing data, which can be used for a wide variety of networks and does not require significant modification. Thanks to the representation of incomplete data with probability density function, a more generalised and precise neuron response (activation) can be calculated. We have seen that this generalisation is warranted from a theoretical point of view. Experiments confirm its functional utility in the different tasks and in the different network architectures. In specific, it provides comparable results to approaches involving full training details.

#### Reference

- N. Al-Milli and W. Almobaideen, "Hybrid Neural Network to Impute Missing Data for IoT Applications," 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 2019, pp. 121-125, doi: 10.1109/JEEIT.2019.8717523.
- S. Karimi-Bidhendi, F. Munshi and A. Munshi, "Scalable Classification of Univariate and Multivariate Time Series," 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 2018, pp. 1598-1605, doi: 10.1109/BigData.2018.8621889.
- 3. I. Mehmood et al., "Efficient Image Recognition and Retrieval on IoT-Assisted Energy-Constrained Platforms From Big Data Repositories," in IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9246-9255, Dec. 2019, doi: 10.1109/JIOT.2019.2896151.
- 4. A. Walinjkar and J. Woods, "ECG classification and prognostic approach towards personalized healthcare," 2017 International Conference On Social Media, Wearable And Web Analytics (Social Media), London, 2017, pp. 1-8, doi: 10.1109/SOCIALMEDIA.2017.8057360.
- 5. Johnson I. Agbinya, "17 Probabilistic Neural Network Classifiers for IoT Data Classification," in Applied Data Analytics Principles and Applications, River Publishers, 2019, pp.277-290.
- S. Wei, X. Zhao and C. Miao, "A comprehensive exploration to the machine learning techniques for diabetes identification," 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018, pp. 291-295, doi: 10.1109/WF-IoT.2018.8355130.
- 7. Yen, N.Y., Chang, JW., Liao, JY. *et al.* Analysis of interpolation algorithms for the missing values in IoT time series: a case of air quality in Taiwan. *J Supercomput* **76**, 6475–6500 (2020). https://doi.org/10.1007/s11227-019-02991-7
- 8. Manqele, Lindelweyizizwe; Falowo, Olabisi; Mwangama, Joyce; Sibiya, George (2019). [IEEE 2019 IEEE AFRICON Accra, Ghana (2019.9.25-2019.9.27)] 2019 IEEE AFRICON A classification model for incomplete Internet of Things sensor data in decision-making., (), 1–10. doi:10.1109/africon46755.2019.9134034
- 9. Z. Yin and J. Hou, "Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes," Neurocomputing, vol. 174, pp. 643–650, 2016.
- 10. A. Singh Rajawat and S. Jain, "Fusion Deep Learning Based on Back Propagation Neural Network for Personalization," 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-7, doi: 10.1109/IDEA49133.2020.9170693.
- 11. K. Yan, C. Zhong, Z. Ji, and J. Huang, "Semi-supervised learning for early detection and diagnosis of various air handling unit faults," Energy Build., vol. 181, pp. 75–83, 2018.
- 12. Izonin, I.; Tkachenko, R.; Kryvinska, N.; Zub, K.; Mishchuk, O.; Lisovych, T. Recovery of Incomplete IoT Sensed Data using High-Performance Extended-Input Neural-Like Structure. *Procedia Comput. Sci.* **2019**, *160*, 521–526.
- 13. A. S. Rajawat and A. R. Upadhyay, "Web Personalization Model Using Modified S3VM Algorithm For developing Recommendation Process," 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-6, doi: 10.1109/IDEA49133.2020.9170701.

- 14. N. Siwasaranond, H. Nimitphong, A. Manodpitipong, S. Saetung, N. Chirakalwasan, A. Thakkinstian, et al., "The Relationship between Diabetes-Related Complications and Obstructive Sleep Apnea in Type 2 Diabetes", *Journal of diabetes research*, pp. 9269170, 2018.
- 15. A. S. Rajawat, O. Mohammed and P. Bedi, "FDLM: Fusion Deep Learning Model for Classifying Obstructive Sleep Apnea and Type 2 Diabetes," 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 835-839, doi: 10.1109/I-SMAC49090.2020.9243553.