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Abstract

This paper shows a computer-aided diagnostic (CAD) method, a dataset from the for lung cancer classification of CT
scans with unmarked nodules. As an initial segmentation approach, thresholding was used to segment out lung tissue
from the remainder of the CT scan. The next finest lung segmentation was created by Thresholding. The initial solution
was to feed the segmented CT scans directly for classification into 3D CNNs, but this proved to be insufficient. Instead,
the first identification of nodule candidates in the CT scans was performed by an updated U-Net trained on LUNAL6
data (CT scans with labelled nodules). In order to identify the CT scan as positive or negative for lung cancer, the U-Net
nodule detection provided several false positives, so regions of CTs with segmented lungs where the most likely nodule
candidates were located as defined by the U-Net production were fed into 3D Convolutional Neural Networks (CNNS).
The 3D CNNs provided the Accuracy O Test Set. Our CAD system's efficiency outperforms the existing literature CAD
systems that have many preparation and testing levels, each involving a lot of labelled data, whereas our CAD system has
only three key stages (segmentation, nodule candidate identification, and classification of malignancy), allowing more
effective training and detection and more generalization for other cancers
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Introduction

Lung cancer is one of the most prevalent diseases responsible for over 225,000 cases, 150,000 deaths, and $12 billion in
total health care expenses. It is also one of the worst cancers; nationally, only 17 percent of people diagnosed with lung
cancer in the country live five years after diagnosis, although in developed countries, the mortality rate is smaller. A
cancer's level corresponds to how deeply it has metastasized. Stages 1 and 2 refer to cancers found in the lungs, and
cancers that have spread to other organs refer to the later stages. Present screening procedures, such as CT scans, include
biopsies and imaging. Early diagnosis of lung cancer (detection during the earlier stages) greatly increases the probability
of survival, but early detection of lung cancer is often more difficult when less symptoms are present. [1].

In patient CT scans of lungs with and without early stage lung cancer, our job is a binary classification guestion to
diagnose the existence of lung cancer. To create an accurate classifier, we aim to use techniques from computer vision
and deep learning, particularly 2D and 3D convolutionary neural networks. An correct classification of lung cancer could
accelerate and reduce the cost of screening for lung cancer, encouraging more universal screening.

Early identification and survival change. The aim is to build a computer-aided diagnostic (CAD) system that involves
patient chest CT scans and outputs as an input, whether the patient has lung cancer or not. [2].

Although this job sounds simple, in the haystack dilemma it is really a needle. The CAD device will have to detect the
presence of a small nodule (< 10 mm in diameter for early stage cancers) from a large 3D lung CT scan to determine

whether or not a patient has early-stage cancer (typically around 200 mm 400 mm 400 mm). An example of an early stage
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nodule of lung cancer seen in a 2D slice of a CT scan is given in Fig. 1. In addition, a CT scan is packed with noise from
nearby tissues, bone, air, so this noise will first have to be preprocessed for the CAD systems search to be successful.
Therefore, image preprocessing, nodule candidate identification, malignancy classification are our classification pipeline.

In this article, we use systematic preprocessing procedures to extract specific nodules in order to increase the precision of
lung cancer diagnosis. In addition, we conduct CNN end-to-end testing from scratch in order to understand the full
capacity of the neural network, i.e. to acquire discriminatory characteristics. A dataset containing lung nodules from more

than 1390 low dose CT scans is used for detailed experimental assessments.

Figure 1: 2D CT scan slice containing a small (5mm) early stage lung cancer nodule.

Related Work
Recently, deep artificial neural networks have been applied in many applications in pattern recognition and machine
learning, especially, Convolutional neural networks (CNNs) which is one class of models [3]. Another approach of CNNs
was applied on ImageNet Classification in 2012 is called an ensemble CNNs which outperformed the best results which
were popular in the computer vision community [4]. There has also been popular latest research in the area of medical
imaging using deep learning with promising results.

R. Golan proposed a framework that trains the weights of the CNN by a back propagation to detect lung nodules in the
CT image sub-volumes. This system achieved sensitivity of 78.9% with 20 false positives, while 71.2% with 10 FPs per
scan, on lung nodules that have been annotated by all four radiologists.

Convolutional neural networks have achieved better than Deep Belief Networks in current studies on benchmark
computer vision datasets. The CNNs have attracted considerable interest in machine learning since they have strong
representation ability in learning useful features from input data in recent years.

Data
Our primary dataset is the patient lung CT scan dataset from Cancer Hospital. The dataset contains labeled data for 1475
patients, which we divide into training set of size 900, and test set of size 575. For each patient, the data consists of CT

scan data and a label (0 for no cancer, 1 for cancer). Note that the dataset does not have labeled nodules. For each
N

()]
up
© 1JERGS, All Rights Reserved. S



Pramod Kumar Sharma, et al. International Journal of Engineering Research and Generic Science (IJERGS)

patient, the CT scan data consists of a variable number of images (typically around 100- 400, each image is an axial slice)
of 512 512 pixels. The slices are provided in DICOM format. Around 70% of the provided labels in the dataset are 0, so
we used aweighted loss function in our malignancy classifier to address this imbalance.

Dataset alone proved to be inadequate to accurately classify the validation set, we also used the patient lung CT scan
dataset with labeled nodules from the Lung Nodule Analysis 2016 (LUNA16) Challenge to train a U-Net for lung nodule
detection. The LUNAL16 dataset contains labeled data for 888 patients, which we divided into a training set of size 710
and a validation set of size 178. For each patient, the data consists of CT scan data and a nodule label (list of nodule
center coordinates and diameter). For each patient, the CT scan data consists of a variable number of images (typically
around 100-400, each image is an axial slice) of 512 x 512 pixels. LUNAL6 data was used to train a U-Net for nodule
detection, one of the phases in our classification pipeline. The problem is to accurately predict a patient’s label (‘cancer’
or ‘no cancer’) based on the patient’s Kaggle lung CT scan. We will use accuracy, sensitivity, specificity, and AUC of the
ROC to evaluate our CAD system’s performance on the test set.

Methods

Typical CAD systems for lung cancer have the following pipeline: image preprocessing, detection of cancerous nodule
candidates, nodule candidate false positive reduction, malig- nancy prediction for each nodule candidate, and malignancy
prediction for overall CT scan [15]. These pipelines have many phases, each of which are computationally expensive and
require well-labeled data during training. For example, the false positive reduction phase requires a dataset of labeled true

and false nodule candidates, and the nodule malignancy prediction phase requires a dataset with nodules labeled with

malignancy.
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Figure 2: 3D Convolutional neural networks architecture

True/False labels for nodule candidates and malignancy labels for nodules are sparse for lung cancer, and may be
nonexistent for some other cancers, so CAD systems that rely on such data would not generalize to other cancers. In order
to achieve greater computational efficiency and generalizability to other cancers, the proposed CAD system has shorter
pipeline and only requires the following data during training: a dataset of CT scans with true nodules labeled, and a
dataset of CT scans with an overall malignancy label. State-of-the-art CAD systems that predict malignancy from CT
scans achieve AUC of up to 0.83 [16]. However, as mentioned above, these systems take as input various labeled data that
is not used in this framework. The main goal of the proposed system is to reach close to this performance.

The proposed CAD system starts with preprocessing the 3D CT scans using segmentation, normalization, down sampling,
and zero-centering. The initial approach was to simply input the preprocessed 3D CT scans into 3D CNNs, but the results
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were poor. So an additional preprocessing was performed to input only regions of interests into the 3D CNNs. To identify
regions of interest, a U-Net was trained for nodule candidate detection. Then input regions around nodule candidates de-
tected by the U-Net was fed into 3D CNNs to ultimately classify the CT scans as positive or negative for lung cancer. The
overall architecture is shown in Fig. 2, all details of layers will be described in the next sections.

A. Preprocessing and Segmentation

For each patient, pixel values was first converted in each image to Hounsfield units (HU), a measurement of radio
density, and 2D slices are stacked into a single 3D image. Because tumors form on lung tissue, segmentation is used to
mask out the bone, outside air, and other substances that would make data noisy, and leave only lung tissue information
for the classifier. A number of segmentation approaches were tried, including thresholding, clustering (Kmeans and
Meanshift), and Watershed. K-means and Meanshift allow very little super- vision and did not produce good qualitative
results. Watershed produced the best qualitative results, but took too long to run to use by the deadline. Ultimately,
thresholding was used.

After segmentation, the 3D image is normalized by applying the linear scaling to squeeze all pixels of the original un
segmented image to values between 0 and 1. Spline interpolation down samples each 3D image by a scale of 0.5 in each
of the three dimensions. Finally, zero-centering is performed on data by subtracting the mean of all the images from the

training set.
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(a).Histograms of pixel values in HU for sample patients CT scan at various slices.
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Scans from different locations for one patient
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(b). Ccorresponding 2D axial slices.

Figure 3: Histogram of HU values at 3b corresponding axial slices for sample patient 3D image at various axial.
Simulation Results

The experiments are conducted using DSB dataset. In this dataset, a thousand low-dose CT images from high-risk
patients in DICOM format is given. The DSB database consists of 1397 CT scans and 248580 slices. Each scan contains a
series with multiple axial slices of the chest cavity. Each scan has a variable number of 2D slices (Fig. 4), which can vary
based on the machine taking the scan and patient. The DICOM files have a header that contains the necessary information
about the patient id, as well as scan parameters such as the slice thickness. It is publicly available in the . Dicom is the de-
facto file standard in medical imaging. This pixel size/coarseness of the scan differs from scan to scan (e.g. the distance

between slices may differ), which can hurt performance of our model.
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Figure 4: Number of slices per patient in data science bowl dataset.

The accuracy metric is the used metric in our evaluations. In our first set of experiments we considered a range of CNN
architectures for the binary classification task. Early experi- mentation suggested that the number of filters and neurons
per layer were less significant than the number of layers. Thus, to simplify analysis the first Convolutional layer used
seven filters with size 5 5 5, the second Convolutional layer used 17 filters with 55 3 and all fully connected layers used
256 neurons. These were found to generally perform well and we considered the impact of one or two Convolutional
layers followed by one or two fully connected layers. The networks were trained as described above and the results of
these experiments can be found in Table I. Our results suggest that two Convolutional layers followed by a single hidden
layer is one of the optimal network architecture for this dataset. The average error for training .

Another important parameter in the training of neural networks is the number of observations that are sampled at each
iteration, the size of the so-called mini batch.

The use of mini batches is often driven in part by computational considerations but can impact the ability of SGD to find
agood solution. Indeed, we found that choosing the proper mini batch size was critical for learning to be effective. We
tried mini batches of size 1, 10, 50 and 100. While the nature of SGD suggests that larger batch sizes should produce
better gradient estimates and there for work better, our results here show that the opposite is true. Smaller batch sizes,
even as small as 1, produce the best results. We suspect that the added noise of smaller batch sizes allows SGD to better
escape poor local optima and thus perform better overall.

The recognition results are shown by confusion matrix achieved on the DSB dataset with 3D CNN as shown in Table
As shown from the Table, Accuracy of model is 86.6%, Misclassification rate is 13.4%, False positive rate is 11.9%,
and False Negative is 14.7%. Almost all patients are classified correctly. Additionally, there is an enhancement on
accuracy due to efficient U-Net architecture and segmentation.
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Actual Abnormal Normal
Abnormal 0.853 0.147
Normal 0.119 0.881

Table I: Confusion Matrix of 3D CNN using 30% Testing

Conclusion

In this paper, discussed a deep Convolutional neural network (CNN) architecture to detect nodules in patients of lung
cancer and detect the interest points using U-Net architecture. This step is a preprocessing step for 3D CNN. The deep 3D
CNN models performed the best on the test set. While we achieve state-of-the-art performance AUC of 0.83, we perform
well considering that we use less labeled data than most state- of-the-art CAD systems. As an interesting observation, The

first layer is a preprocessing layer for segmentation using different techniques. Threshold, Watershed, and U-Net are used

to identify the nodules of patients.

The network can be trained end-to-end from raw image patches. Its main requirement is the availability of training

database, but otherwise no assumptions are made about the objects of interest or underlying image modality.

In the future, it could be possible to extend our current model to not only determine whether or not the patient has

cancer, but also determine the exact location of the cancerous nodules. The most immediate future work is to use

Watershed segmentation as the initial lung segmentation. Other opportunities for improvement include making the

network deeper, and more extensive hyper parameter tuning. Also, we saved our model parameters at best accuracy, but

perhaps we could have saved at other metrics, such as F1. Other future work include extending our models to 3D images

for other cancers. The advantage of not requiring too much labeled data specific to our cancer is it could make it

generalizable to other cancers.
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