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Abstract 

This paper shows a computer-aided diagnostic (CAD) method, a dataset from the  for lung cancer classification of CT 

scans with unmarked nodules. As an initial segmentation approach, thresholding was used to segment out lung tissue 

from the remainder of the CT scan. The next finest lung segmentation was created by Thresholding. The initial solution 

was to feed the segmented CT scans directly for classification into 3D CNNs, but this proved to be insufficient. Instead, 

the first identification of nodule candidates in the  CT scans was performed by an updated U-Net trained on LUNA16 

data (CT scans with labelled nodules). In order to identify the CT scan as positive or negative for lung cancer, the U-Net 

nodule detection provided several false positives, so regions of CTs with segmented lungs where the most likely nodule 

candidates were located as defined by the U-Net production were fed into 3D Convolutional Neural Networks (CNNs). 

The 3D CNNs provided the Accuracy O Test Set. Our CAD system's efficiency outperforms the existing literature CAD 

systems that have many preparation and testing levels, each involving a lot of labelled data, whereas our CAD system has 

only three key stages (segmentation, nodule candidate identification, and classification of malignancy), allowing more 

effective training and detection and more generalization for other cancers 

Keywords: Lung cancer; computed tomography; deep learning; Convolutional neural networks; segmentation 

Introduction 

Lung cancer is one of the most prevalent diseases  responsible for over 225,000 cases, 150,000 deaths, and $12 billion in 

total health care expenses. It is also one of the worst cancers; nationally, only 17 percent of people diagnosed with lung 

cancer in the country  live five years after diagnosis, although in developed countries, the mortality rate is smaller. A 

cancer's level corresponds to how deeply it has metastasized. Stages 1 and 2 refer to cancers found in the lungs, and 

cancers that have spread to other organs refer to the later stages. Present screening procedures, such as CT scans, include 

biopsies and imaging. Early diagnosis of lung cancer (detection during the earlier stages) greatly increases the probability 

of survival, but early detection of lung cancer is often more difficult when less symptoms are present. [1]. 

In patient CT scans of lungs with and without early stage lung cancer, our job is a binary classification question to 

diagnose the existence of lung cancer. To create an accurate classifier, we aim to use techniques from computer vision 

and deep learning, particularly 2D and 3D convolutionary neural networks. An correct classification of lung cancer could 

accelerate and reduce the cost of screening for lung cancer, encouraging more universal screening. 

Early identification and survival change. The aim is to build a computer-aided diagnostic (CAD) system that involves 

patient chest CT scans and outputs as an input, whether the patient has lung cancer or not. [2]. 

Although this job sounds simple, in the haystack dilemma it is really a needle. The CAD device will have to detect the 

presence of a small nodule (< 10 mm in diameter for early stage cancers) from a large 3D lung CT scan to determine 

whether or not a patient has early-stage cancer (typically around 200 mm 400 mm 400 mm). An example of an early stage 
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nodule of lung cancer seen in a 2D slice of a CT scan is given in Fig. 1. In addition, a CT scan is packed with noise from 

nearby tissues, bone, air, so this noise will first have to be preprocessed for the CAD systems search to be successful. 

Therefore, image preprocessing, nodule candidate identification, malignancy classification are our classification pipeline. 

In this article, we use systematic preprocessing procedures to extract specific nodules in order to increase the precision of 

lung cancer diagnosis. In addition, we conduct CNN end-to-end testing from scratch in order to understand the full 

capacity of the neural network, i.e. to acquire discriminatory characteristics. A dataset containing lung nodules from more 

than 1390 low dose CT scans is used for detailed experimental assessments. 

 
Figure 1: 2D CT scan slice containing a small (5mm) early stage lung cancer nodule. 

Related Work 

Recently, deep artificial neural networks have been applied in many applications in pattern recognition and machine 

learning, especially, Convolutional neural networks (CNNs) which is one class of models [3]. Another approach of CNNs 

was applied on ImageNet Classification in 2012 is called an ensemble CNNs which outperformed the best results which 

were popular in the computer vision community [4]. There has also been popular latest research in the area of medical 

imaging using deep learning with promising results. 

 R. Golan proposed a framework that trains the weights of the CNN by a back propagation to detect lung nodules in the 

CT image sub-volumes. This system achieved sensitivity of 78.9% with 20 false positives, while 71.2% with 10 FPs per 

scan, on lung nodules that have been annotated by all four radiologists.  

Convolutional neural networks have achieved better than Deep Belief Networks in current studies on benchmark 

computer vision datasets. The CNNs have attracted considerable interest in machine learning since they have strong 

representation ability in learning useful features from input data in recent years. 

Data 

Our primary dataset is the patient lung CT scan dataset from Cancer Hospital. The dataset contains labeled data for 1475 

patients, which we divide into training set of size 900, and test set of size 575. For each patient, the data consists of CT 

scan data and a label (0 for    no cancer, 1 for cancer). Note that the dataset does  not have labeled nodules. For each 
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patient, the CT scan data consists of a variable number of images (typically around 100- 400, each image is an axial slice) 

of 512  512 pixels. The  slices are provided in DICOM format. Around 70% of the provided labels in the  dataset are 0, so 

we used a weighted loss function in our malignancy classifier to address this imbalance. 

Dataset alone proved to be inadequate to accurately classify the validation set, we also used the patient lung CT scan 

dataset with labeled nodules from the Lung Nodule Analysis 2016 (LUNA16) Challenge to train a U-Net for lung nodule 

detection. The LUNA16 dataset contains labeled data for 888 patients, which we divided into  a training set of size 710 

and a validation set of size 178. For each patient, the data consists of  CT scan data and a nodule label (list of nodule 

center coordinates and diameter). For each patient, the CT scan data consists of a variable number of images (typically 

around 100-400, each image is an axial slice) of 512 × 512 pixels. LUNA16 data was used to train a U-Net for nodule 

detection, one of the phases in our classification pipeline. The problem is to accurately predict a patient’s label (‘cancer’ 

or ‘no cancer’) based on the patient’s Kaggle lung CT scan. We will use accuracy, sensitivity, specificity, and AUC of the 

ROC to evaluate our CAD system’s performance on the test set. 

Methods 

Typical CAD systems for lung cancer have the following pipeline: image preprocessing, detection of cancerous nodule 

candidates, nodule candidate false positive reduction, malig- nancy prediction for each nodule candidate, and malignancy 

prediction for overall CT scan [15]. These pipelines have many phases, each of which are computationally expensive and 

require well-labeled data during training. For example, the false positive reduction phase requires a dataset of labeled true 

and false nodule candidates, and the nodule malignancy prediction phase requires a dataset with nodules labeled with 

malignancy. 

 
Figure 2: 3D Convolutional neural networks architecture 

True/False labels for nodule candidates and malignancy labels for nodules are sparse for lung cancer, and may be 

nonexistent for some other cancers, so CAD systems that rely on such data would not generalize to other cancers. In order 

to achieve greater computational efficiency and generalizability to other cancers, the proposed CAD system has shorter 

pipeline and only requires the following data during training: a dataset of CT scans with true nodules labeled, and a 

dataset of CT scans with an overall malignancy label. State-of-the-art CAD systems that predict malignancy from CT 

scans achieve AUC of up to 0.83 [16]. However, as mentioned above, these systems take as input various labeled data that 

is not used in this framework. The main goal of the proposed system is to reach close to this performance. 

The proposed CAD system starts with preprocessing the 3D CT scans using segmentation, normalization, down sampling, 

and zero-centering. The initial approach was to simply input the preprocessed 3D CT scans into 3D CNNs, but the results 
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were poor. So an additional preprocessing was performed to input only regions of interests into the 3D CNNs. To identify 

regions of interest, a U-Net was trained for nodule candidate detection. Then input regions around nodule candidates de- 

tected by the U-Net was fed into 3D CNNs to ultimately classify the CT scans as positive or negative for lung cancer. The 

overall architecture is shown in Fig. 2, all details of layers will be described in the next sections. 

A. Preprocessing and Segmentation 

For each patient, pixel values was first converted in each image to Hounsfield units (HU), a measurement of radio 

density, and 2D slices are stacked into a single 3D image. Because tumors form on lung tissue, segmentation is used to 

mask out the bone, outside air, and other substances that would make data noisy, and leave only lung tissue information 

for the classifier. A number of segmentation approaches were tried, including thresholding, clustering (Kmeans and 

Meanshift), and Watershed. K-means and Meanshift allow very little super- vision and did not produce good qualitative 

results. Watershed produced the best qualitative results, but took too long to run to use by the deadline. Ultimately, 

thresholding was used. 

After segmentation, the 3D image is normalized by applying the linear scaling to squeeze all pixels of the original un 

segmented image to values between 0 and 1. Spline interpolation down samples each 3D image by a scale of 0.5 in each 

of the three dimensions. Finally, zero-centering is performed on data by subtracting the mean of all the images from the 

training set. 

 
(a).Histograms of pixel values in HU for sample patients CT scan at various slices. 
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(b). Ccorresponding 2D axial slices. 

Figure 3:  Histogram of HU values at 3b corresponding axial slices for sample patient 3D image at various axial. 

Simulation Results 

The experiments are conducted using DSB  dataset.  In this dataset, a thousand low-dose CT images from high-risk 

patients in DICOM format is given. The DSB database consists of 1397 CT scans and 248580 slices. Each scan contains a 

series with multiple axial slices of the chest cavity. Each scan has a variable number of 2D slices (Fig. 4), which can vary 

based on the machine taking the scan and patient. The DICOM files have a header that contains the necessary information 

about the patient id, as well as scan parameters such as the slice thickness. It is publicly available in the . Dicom is the de-

facto file standard in medical imaging. This pixel size/coarseness of the scan differs from scan  to scan (e.g. the distance 

between slices may differ), which can hurt performance of our model.  
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Figure 4: Number of slices per patient in data science bowl dataset. 

The accuracy metric is the used metric in our evaluations. In our first set of experiments we considered a range of CNN 

architectures for the binary classification task. Early experi- mentation suggested that the number of filters and neurons 

per layer were less significant than the number of layers. Thus, to simplify analysis the first Convolutional layer used 

seven filters with size 5 5 5, the second Convolutional layer used 17 filters with 5 5 3 and all fully connected layers used 

256 neurons. These were found to generally perform well and we considered the impact of one or two Convolutional 

layers followed by one or two fully connected layers. The networks were trained as described above and the results of 

these experiments can be found in Table I. Our results suggest that two Convolutional layers followed by a single hidden 

layer is one of the optimal network architecture for this dataset. The average error for training . 

Another important parameter in the training of neural networks is the number of observations that are sampled at each 

iteration, the size of  the  so-called  mini batch.  

The use of mini batches is often driven in part by computational considerations but can impact the ability of SGD to find 

a good solution. Indeed, we found that choosing the proper mini batch size was critical for learning to be effective. We 

tried mini batches of size 1, 10, 50 and 100. While the nature of SGD suggests that larger batch sizes should produce 

better gradient estimates and there for work better, our results here show that the opposite is true. Smaller batch sizes, 

even as small as 1, produce the best results. We suspect that the added noise of smaller batch sizes allows SGD to better 

escape poor local optima and thus perform better overall. 

The recognition results are shown by confusion matrix achieved on the DSB dataset with 3D CNN as shown in Table 

As shown from the Table, Accuracy of model is 86.6%, Misclassification rate is 13.4%, False positive rate is 11.9%, 

and False Negative is 14.7%. Almost all patients are classified correctly. Additionally, there is an enhancement on 

accuracy due to efficient U-Net architecture and segmentation. 
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Actual Abnormal Normal 

Abnormal 0.853 0.147 

Normal 0.119 0.881 

Table I: Confusion Matrix of 3D CNN using 30% Testing 

Conclusion 

In this paper,  discussed  a deep Convolutional neural network (CNN) architecture to detect nodules in patients of lung 

cancer and detect the interest points using U-Net architecture. This step is a preprocessing step for 3D CNN. The deep 3D 

CNN models performed the best on the test set. While we achieve state-of-the-art performance AUC of 0.83, we perform 

well considering that we use less labeled data than most state- of-the-art CAD systems. As an interesting observation, The 

first layer is a preprocessing layer for segmentation using different techniques. Threshold, Watershed, and U-Net are used 

to identify the nodules of patients. 

 The network can be trained end-to-end from raw image patches. Its main requirement is the availability of training 

database, but otherwise no assumptions are made about the objects of interest or underlying image modality. 

In the future, it could be possible to extend our current model to not only determine whether or not the patient has 

cancer, but also determine the exact location of the cancerous nodules. The most immediate future work is to use 

Watershed segmentation as the initial lung segmentation. Other opportunities for improvement include making the 

network deeper, and more extensive hyper parameter tuning. Also, we saved our model parameters at best accuracy, but 

perhaps we could have saved at other metrics, such as F1. Other future work include extending our models to 3D images 

for other cancers. The advantage of not requiring too much labeled data specific to our cancer is it could make it 

generalizable to other cancers. 
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