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Abstract

Extensions of number of well-known special function such as Beta and Gauss hypergeometric and their properties have
been investigated recently by several authors. Our approach is based on the use of Generalized Fractional Calculus
(GFC) operators. We aim to investigate the MSM (Marichev-Saigo-Maeda)-fractional calculus operator, Caputo-type
MSM-fractional differential operator and pathway fractional integral operator of the extended generalized Gauss
hypergeometric function. Furthermore, by employing some integral transform on the resulting formulas, we presented
some more image formulas. All the results derived here are of general character and can yield a number of (known and
new) results in theory of special functions.

Keywords: Gamma function, extended generalized beta functions, generalized hypergeometric functions, Extended
generalized hypergeometric functions, Fractional Integral operators, integral transforms, Pathway fractional integral

operator.

Introduction

Throughout this paper }, R, C and Z, denote the sets of positive integers, real numbers, complex numbers and non-
positive integers, respectively and M, = B U {0}. Extensions of a number of well known special functions were

investigated by many authors (see, e.g. [1], [2], [4], [5], [6], [8] and see also, very recent work [7]). In particular,

Chaudhary et al. [5] gave the following interesting extension of the classical Beta function B (e, 5) :

1

S(ﬂ,,@,:PII:J‘ A ) Lt ex;a(—%)dr . (1.1)

(min{fH (), R(F)}=0; R(P)=0)

where the Beta function B (&, #; 0) = E(a, ) is a function of two variables & and & defined by
1
J = 11— 081 gt (R(a) > 0,R(B) > 0)
Blaf) =41 - (1.2)
T'(e)T(5)
[+ f)

(a,B € C\Z;

and I is the familiar Gamma function.
In the sequel, in 2004, by making use of B=(x, v}, Chaudhary et al. [6] extended the Gauss’s hypergeometric function as

follows:
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Bo(#+nc—4&)=z"
B(#,c—4&) n!

Fola, ;¢ z2) =Z(n)n ..(13)

(EH(P) =0 |:| = 1; EH(G) = R(f+) = {J),
where (4),, is the pochhammer symbol or the shifted factorial, which is defined (for 4 £ C) by (see [11]):

™, ={

1 (n=0)
AMA+1) . (A+n—1) (ne N)
TG+
==~ (“e0z . (14)

Among several interesting and potentially useful properties for extended hypergeometric function F= (a, 4; ¢; z) defined

by (1.3), the following integral representing was also given by Chaudhary et al. [6]:
1

[ tF (1 - (1 —zt)7® exp[—

1

Fola,fecz)=————
zladieiz) = g5

m) dt .. El.'_:r:]

(R(P) =0, =0and |large (1 - 2)| = m; R(c) = rR(&) = 0)

The generalized hypergeometric series ., is defined by (see [16]):

oo, Oy ]_ = [ﬂﬂn---(:ﬂ;}“:”

F I = Ay (2 .l
EA P L (B, (B,)_ 7!

Here p and g are positive integers or zero (interpreting an empty product as 1) and we assume that the variable z the

- .‘Jfr—?[:“i’""“:-1-:181""”8'-?-::} - (1.6)

numerator parameters ¢4, ..., «,, and the denominator parameters (3, ..., 5, take on complex values, provided that no
zeros appear in the denominators of (1.6), that is
(8;€ C\Z3; j, . q) - (17)
Obliviously, for the Gauss hypergeometric function -F; , we have
Fa [ct, £ e _‘j = .5 (a, £ :j.

In a similar manner,&zergin et al. [4] introduced the following generalization of (1.1) (see, for detail [4],[22]).

1

BY (o, f) = J t* (1 —t)F R [p; a; _1‘(1?;—1“)) dt - (1.8)
(min{R(a), R(B), R(p),R(a)} = 0; R(P) = 0)
and
5;5'5'.' (& +n,c—4&)z"
B(&,c— &) nl

ZF_'“_ (a,f;c;z) = Z (a), . (1.9)
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(fﬁf(ﬂ:"} =0; |:| = 1; min{iﬁf{p), fﬁf{cr:l} =0 H(G) = R{«E‘*«) = {J}.

The following integral representation of the Pfaff-Kummer type was given by &zergin et al. [4]:

1

[ a0 im0 m (pro -

F_I:ﬁ'b_'.' Aoz = ———
P e b = gr s t(1—1t)
|:.

. (1.10)

(R(P)z0;P=0and|arg (1 - 2)| =7 R(c) = R(&) = 0;min{R(p). K(e)} = 0).
Very recently, Srivastava et al. [2] introduced a further natural generalization of (1.8) and (1.9), respectively, in terms of
[{x sen, } defined as follows (see [2]):

[1]

the function

1

N I N ST 7 __7

B, (1,_1._.:3'3)—J t*71(1 — 1) 1H({,¢;};Em, r[l—r]Jdr . (1.11)
|:.
(R(P) = 0;min{R(x), ®R(¥)} = 0).
and
= (fkslean.)

I':'I‘:-."}-."E?.'.;\..I L BF 4L ENp. E’F‘- +n,6— ,_E"q.;?j:."!

¥, (a,&;c;z) _Z’;(H)H 5(6.c—&) — e (1.12)
(lz| = 1; Wic) =R(&)=0;R(P)=0)

where H[{x } is given by the following definition (see [2]):

Definition: Let a function H[{x sen, } be analytic within disk [z| = (0 < R = o) and let its Tylor-Maclaurin
coefficients be explicitly denoted by the sequence {k;};=x_. Suppose also that the function Z({k, Yoen,; z) can be
continued analytically in the right half plane F(z) = 0 with the asymptotic properties given as follows:
Zk;— (lz2l <R;0 < R < 003k, = 1)
s £1
;(_{H;};smei :} = jf=0
1
Mz« exp(z) [l + @ [T)] (R(z) 20 M, = 0w EC)
.(1.13)
for the suitable constants ', and « depending on essentially upon the sequence {k;};emo.Here we assume that the
series in the first part of the definition (1.13) converges absolutely when |z| <= & for some (0 = & < o) and

represents the function 3[:{3{;}55&;053} which is assumed to be analytic within the disk [z| <% for some
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(0 = R < o) and which can be appropriately continued analytically elsewhere in complex z-plane with the order

estimate provided in the second part of the definition (1.13).

The outlined above-mentioned detailed and systematic investigation was indeed motivated largely by the demonstrated
potential for applications of the more extended generalized Gauss hypergeometric function and their special cases in
many diverse areas of mathematical, physical, engineering, and statistical science (see [2]).

Let 4,4,{,{",¥ €T with K(y) = 0 and x € H™.Then the generalized fractional integral operators involving the

Appell functions F; are as follows:

x

-4

(f,:”j"?"?‘f] (x) = ;-(F)J (x— )7 1t74 (,L A vl —5 1— %] F(Odt .(1.14)
.

and

(1224 £) (x) = ;E_fj J (t—x)" "4 (A, 200y —EJ 1— %J f(H)dt  .(1.15)

The generalized fractional integral operators of types (1.14) and (1.15) have been introduced by Marichev [9] and later
extended and studied by Saigo and Maeda [10].These operators are known as the Marichev-Saigo-Maeda operators
(MSM-Operators). Recently, Mondal and Nisar [17], Nisar at el. [19] have been investigated the Marichev-Saigo-Maeda
operators generalized Bessel function and k-Mittag Leffler function (see also [18]).

The corresponding fractional differential operators have their respective forms:

W= (%) (RO e g
and

e A\ melee e

(D243 £)() = (- (ITAH O ROt RO £) ()L (117)

The fractional integral operators have many interesting applications in various fields. For some results on fractional
calculus, we refer to ([20, 21]).

The following four results will be required (for the first and second, see [3]; for the third and fourth, see [12]).

Lemma 1. Let 4, 4",{,{',¥,p €T be such that ®(y¥) =0 and K(p) > max (O, KA+ +{ —y), R -

Then
(I/I-'/I-.I".-y".-rl'}'rﬂ_-l] (lj _ .'_Izg:'.'_|5_}'—/..—/'_'.—[?].”ﬁ_'_-?.l—/...l_| 1.5_-:'._5'-“_}'_1 El 18:]
L0 / rip+{Irip+y—A-2"Jrip+y-1'-0) AT
Lemma 2. Let LA vipEL be such that H(y) =0 and

Rp) = max {R(D), R(—A -2+ ), R(—2 - "+ 1)) Then

© 1JERGS, All Rights Reserved.
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—{+plrlA+d —y+p|T A+ —y+p)

FlplriA—{+p)ridsd +7 —y+a)

1.—2_—2."—_1'—5 (l.l"?)

[:I_f'..f'.'l-'.-y-'.-rl-}'r—ﬁ}[1.) = rt

Lemma3. Let 4,4, v, 0 € Cwith K(4) = 0and H(p) = max{0,—R(J —¥)}. Then

In Particular
6571 () = S e w2

(R(A) = 0, R(p) = max{0, —RK(»}

and

ff"'_i}(l)_ — x P71 (R(A) = 0,R(p) = 0) .(1.22)

Lemmad4. Let 4,8, v, 0 € Cwith R(A) = 0and R(p) = 1 + min{R(E), R(y)]. Then

rdEy - N -l Fly—o+1) .5
[.I— “ t 1}(1j - ."I:‘l—5_".'_':.9.—511'—5—1_" A =t (lzaj
In Particular
(12767 () = T - (124)
(R(A) =0,R(p) =1 +R())
and

r(i—p) o
rA—p+1)

(R(A) = 0, H(p) = 1)

MSM Fractional Integral Representation of the Extended Generalized Hypergeometric Function

(12t271) (x) = . (1.25)

Here, in this section, we shall establish some fractional integral formulas for the extended generalized Gauss
hypergeometric type functions Fx % (. ).
Theorem 1. Let =x=0, AL, yv.p,e€C  with H(c) = R(H)=0,R(P)=0  and

H(p) = max {0, RH(A+ 4+ —v), KA =) Then the following integral formula holds true:

(187 [ E 02 (0,85 01 e8) ) () = 4o i oot Loy A Ao )

- Mo+l iripgsy—A-Aripg+y-4"=-0)

© 1JERGS, All Rights Reserved.
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a0 (p+y—A-A =00+ =4 |«
L, (p+{)(o+yv—2—-2)(p+v -2 —qj_;"”*] (el = 1) . (2.1)

Proof: For convenience and simplicity, we denote the left hand side of (2.1) by &.Then applying (1.12), we have

IO (5 P9 S_ [«E'*—rtc—f*?)er
- (‘r {r Z(“j“ B(&c—4&) D(":’

Interchanging the summation and integration, which is valid under the condition of Theorem 1, we find that

_ 2 (a]“ E‘; £ ({11- + 1o — :Pji ([E:EL" [1‘5_"_1]) (1]

% Fik

37 F+3

B(fc— &) n!\

Applying Lemma 1, we get

:i(aj 5- S tnec—dPle" T(p+m)l(p+n+y—A—4 —{)
" B(#,c— 4) !F[’D_ﬂ’_"?jFEP_T’t—}'—;{—,}L-'j

Fotn+=1) sty
FMp+n+y—4-={)

S i LR |

r(p)r(o+y—24—-2 -0r(p+7{ —4) i(a) 51::{](4‘—% c— &P)

Fe+)r(p+y—a—-a)rp+y—-2 -7) o B(&,c—+#)

(0)ulp+y—2-2-0,(p+ -12), (m)
o+ orv=2=(o+r =7 -0,
Which, in view of (1.12), leads to the right-hand side of (2.1). This completes the proof.

If we reduce MSM fractional integral in the Saigo fractional integral formula, then we arrive at the following result

recently obtained by Choi et al. [7].
Corollary 1. Let x = 0,R(P) = 0, R(e) = R(#) = 0 with the parameters 4, {, v, 5, e € C satisfying the inequality

H(p) = max{0, R ({ — ) }. Then the following fractional integral formula holds true:

(f}";}. [fﬁ_i:"';:k{:‘(a,fy: €; Efj]] (x) =P~ 1 rip)rip=C{+y)

e Mo—{irp+A+y)

(kg a, 4, A (J':' ".57 :I e
x F [ I )91] (xl<1)  ..(22)

Theorem 2. Let A AL, v.peeC with =0, Hic)=R(H) =0, R(P)=0 be such that

Rip) = max {R(O, R(—A -4 +¥) R(-4A-0+ :x)}. Then the following integral formula holds true:

_— ‘_: . ¥ ? .':_

"'~1—’."'L1—’—'. r_.’."L‘l—’—/. /.—r_."—}.
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(kg ':'EJ"F"J(l_p_()J(l_p_"}*_"i-.l_'37):(1_.1':'_"{_'37!_?").:E
SE | A A I Ml I CD

Proof. We can establish (2.3) by a similar argument as in the proof of (2.1), using Lemma (2) instead of Lemma (1).
Therefore, we omit its details.

Interestingly, if we reduce MSM fractional integral operator in Saigo fractional integral operator, then, we arrive at the
following result obtained by Choi et al. [7].

Corollary 2. Let x = 0, H(P) = 0, H(c) = R(£) = 0 with the parameters 4, {,v.p, e € C satisfying the inequality

Hpo) = max{H(—I), H(—y)}. Then we have

(227 [fj'ifr':k{} [aﬁf‘a: c:_m (x) = ¢p=i-1 _Llza=0rl-ay)

\ J F1-pril—pt A+{+y)

o (2.4)

[ e (ot p e ¢
e ISR

MSM Fractional Differential Representation of the Extended Generalized Hypergeometric Function
In this section, we shall establish the Marichev-Saigo-Maeda fractional differentiation of the extended generalized Gauss

hypergeometric type functions ﬁfkf (.. For our purpose, the following Lemmas will be required (see [23]).
Lemmabs. Let4,4",{,{",¥, p € C besuch that K(p) = max {0, R(—4 + ), R(—4 -1 =" ++)}. Then

['Dé-_f'-"-f-f"-}'r:—i ] (x)

. s

LI+ prA+ X+ =y 40
- F(—{+p)Fr(A+ A —y+po)MA+{ —y+ pjl w(3.1)

Lemma 6. Let AMALL O y.pELC be such that
W(p) > max (R(~{VRE + ¢ =), RO+ 4 =) + [RG] + 1), Then
(024787472 x)

T +pM(A—A +y+ o)l (A {4y +p) A =y
Fo)M(—A'+{" +p)l(—A—4 —{+y +p)

(3.2)

Theorem 3. Let x = 0,R(P) =0, Ric) = R(#) > 0 and the parameters 4, 4",{,{",¥.p.e €C be such that
H(po) = max{0, R(—A+ (), R(—A— 4" — "+ y)}. Then we have
Fp)Mp—{+A(p+iA+A+{" —y)

ATy [op—1am(kg) s N — ot ArA —y—1
(s 447 [ 8 cie0)]) 0 = Mo -OIpsAt A -l +i+0—7)
(heg) a, £, 2> [.ID - '37 a j-): (.ID +A+1 4 '3'7 - T":I-: .
e Ay AR S A B D

Proof. Let /A(x) be the left-hand side of (3.3) and using (1.12), we have

© 1JERGS, All Rights Reserved.
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B(#,c—4) !

1l el = plred H+n,ec—H;P)e™t”
A(x) = (D.;r':- o [rﬂ Y (@, —= ( ) D ()
n=g
Interchanging the summation and differentiation, which is valid under the condition of Theorem 3, we find that

- g Stnc—+P)e™; st
;‘5(_\-] _ Z(aj“ 55._ |: .P)_[Dﬁ.fl NP [I_j—."!—'l]\l (1)

B(f,c—4&) nl Vv OF /

Next applying Lemma 5, we obtain

o = S;k{']ﬂ’f‘*_m@_’f“.:?)f'n FMp+n)l{p+n—40+4)
A(x) _Z:Eﬂj” B(f#,c—4&) W lMp+n—{)MNA+A —v+p+n)

Fp+n+i+id +{" —y)
rlp+n+i+{" —y)

P n+d+d —y-1

i

vt T@ro=c+Drle+a+14+7 -y N B (6 +nc—4:7)
: 32@”

Tlo—Orlp+2+2 —r(p+i+{ -y B(&,c— &)

(p), (p—¢+2) (p+i+i +7 —y), (ex)
(P_'ijy;(P_;i—fl.—j,')}:(p—,{_,’?'_,:/,)}: 7l '

which, in view of (1.12),we readily obtain the right-hand side of (3.3).

Theorem 4. Let x = 0,H(P) =0, Ric) =R(#) =0 and the parameters 4, 4".{,{',y,p EC be such that
Rip) = max{R(—{VLRA + =), R(A+ 2 —y) + [R(¥)] + 11 Then we have

£ . E

(D,:”'jf""f"f"'-" [rﬁ‘ijﬁf"‘f-" (a,&;c; ;]]] (x)
= :}_-ﬁ_r:’.—r:'..l—}-—'_[ Frl—p+{r1l—p—-A-A+yiM1—p—-A—-{+y)
Frl—pfr(1—p—A+Ml—p—A-4 —0+7)

ol (1—p+{)(1—p—2-A+y),(1—-p—-2—={+y);
F’"[ e F(Ll=p) M(l=p—A +0)(1—p=d=d = +y); - (34)

Proof. The proof of the fractional integration formula (3.4) would run parallel to the proof of (3.3) by using Lemma (6).

X 3

T

So, its proof details are omitted.

Caputo-type MSM Fractional Differentiation Representation of the Extended Generalized Hypergeometric
Function

Rao et al. [15] introduced the Caputo-type fractional derivatives that have the Gauss hypergeometric function in the
kernel. The Left-and right-hand sided Caputo fractional differential operators associated with the Gauss hypergeometric

function are defined, respectively, by

© 1JERGS, All Rights Reserved.
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[ .fr.71 ](j_(—x [1'./]‘1r.’['ll.f]‘l.fl[1'x]1f[1|/]1](1j

and
[:EDE._E.}' f}[lj — (_lj["{':/.']—'l [:I:/I.—[ﬁ':/....']_i-__E_[ﬁ':/....']—'l./'_—:|.'fl:[ﬁ':/.--.']_i-l}txj_.

where 4, {,¥y € CwithK(A) = 0and x € H™.

The Left-and right-hand sided Caputo-type MSM fractional differential operators associated with Appell F; are defined,
respectively, by

(GD“ F 4l f) (x) = “—2.' —A = AL -+ [ED ]+ fu:[-'_‘%_(/'__'-]_i_'-J (x)

L3 I:._

and
I:.EDE'/I':'-E'-E:'}. f}(lj — (_lj[‘{l:r'_']—i [.I:/I.:.—/I...E:.—l,?:—[:-‘q.lz/....']—i-_}'_['-‘%.':/I...']—i f':[ﬁ':/...-']—i..'}(le

where 4, A", ¢, {",¥v € CwithH(A) = 0andx € K",

In this section we derive the left-and right-sided Caputo fractional differential formulas of the extended hypergeometric
function (1.12). The following Lemmas given in (see [23]) are needed in sequel.

Lemma 7. Let AV v,pEC and m = [K(y)] + 1 with
Rip) —m = max{0,R(—-A+ {),(—A— A ="+ y)}1.Then

[cDé-_A"-E-E"-}' r:—‘l:] (x)

__Ir@—¢+p—mIrA+ X+ —y+p—m oy yepes
F={+p—-mIIMA+A —y+p)Fr(A+{" —y+p—m)

L (4.1)

Lemma$8. Let4, 4,¢,{".y.p € Candm = [K(y)] + 1 with R(p) + m = max{R(—]"),
RA +{—y) . RA+ A —y) +m]}. Then

(D2 227 ) (x)

TG +p+mM(A=2 4y + L(X 4 4y +p+m) o
PO (A== p=ml(—i—F —{ <y <p=m)

L (42)
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Theorem 5. Let x = 0, H(P) = 0, H(c) = R(#) = 0, m = [H(y)] + 1 and the parameters A, 4',{,{',y, p.e EC
be such that R(p) — m = max{0, K(—A+ ), (=41 — " — {"+ ¥)}.Then there holds the following formula:
(“DE: L [1“5_13}':"{{'.' (@, £ c; er)]] (x)

A+d —p+ae1 Flpir(p+A—-¢(—mifNp+ i+ i+ —y—m)
Flp—{—m)Ip+i+d —y)T(p+ A+ —y—m)

ﬂjfn[pl (J':'_";‘_"{_mjl [J':'_";‘_";‘:_"a?:_?_m).:
eTp—¢—m),Tp+i+ A —y)(p+A+{ —y—m);

£x - (43)

-
a5 WSS Ta

% JFoEd [

Proof. For convenience, we denote the left-hand side of (4.3) by A(x). Applying (1.12), we get

ATy | am1 S;k{'.llif +n,c— H; :P':IE' it
Ax) = ( {r Z(ﬂ)“ 56 c—&) D (x)

Interchanging the order of summation and differentiation, which is guaranteed under the given condition of in this

theorem, we find that

o . S;kf'.'[«f'*—njc—f{:ﬂ?]e" AL pinmt _
ﬁ('\j_“z:l}(ﬂjﬂ SE«E“'_.nﬂ—«f‘*:l nl If DE— [I’ ]]I::"j

Next using Lemma 7, we obtain

ﬁixj:i(ﬂ B;k;;-(afl—n,c—,fl;:]?]e” Fp+mI(p+2i—7+n—m)

— B(#,¢c—4) nr(p—(+n—-ml(p+i+d —y+n)

FMp+Ai+A+{ —y+n—m)

"—"—f—.-f —_1'—1

rp+2+{ —y+n-m
Interpreting the right-hand side of the above equation, in the view of the definition (1.12), we arrive at the required result
(4.3).

Theorem 6. Let x = 0, H(P) = 0, H(c) = R(#) = 0,m = [R(y)] + 1 and the parameters 1, 4',{,{",y,p.e EC

be such that (o) + m = max{H(—{"),H(4 + A" —y) + m]}. Then there holds the following formula:

[ch-/'-"-'.-’-'f'l-}' [fﬁ‘iji;:kf [c‘e &5 c; —]]] (x)

Fr(1+{' —p+m)F(1+y—A—-A—-p)l(1+y—A—-{—p+m)
FrA—p)l(1-A+{—p+m)Fr1-2-4—-{+y—p+m)
a1+ —p+m),(1+y —A—A —p),(1+y—F —{—p+m)e

_sff"‘i-[ A T
IRl eT(l—p)T(A -V +{" —p+m),(1-A-A—-{+y—p+m); «x

Atd —y+p—1

© 1JERGS, All Rights Reserved.
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o (44)

Proof. The proof of the result (4.4) follows the same as that employed in the proof of theorem 5 and consequently, we
omit the details.

5. Integral Transform of the Extended Generalized Hypergeometric Functions
In this section, the image of FF""‘” (.7 under Beta, Laplace and Whittaker functions have been obtained. For our purpose,

we begin by recalling some integral transforms.
The Euler (Beta) transform of f(z) is defined as [25]:
!
B{f(z):a, B} = J z¢7 1 - 2)Ftdz (Rla) = 0,R(E) = 0) . (5.1)
2

Laplace transform of f(z] is defined as [25]:

L{F(z):s) = j e~ £(2) dz (R(s) = 0) . (52)

The Whittaker transform is defined as [26]:

r(

+u+9) r(3-u+9)
r(1-¢+9)

M||—=

J e~ 2ttt W . (f)dt = . (5.3)
0

where R(u = 9) = _l,-“'z and W ¢, () is the Whittaker confluent hypergeometric function.
Theorem 7. (Beta function)

B{FM (+m #;6v2) s Lm) = BULm). 7 (1L 456:7) (5.4)

where H(c) < R(&) = 0,R (1) = 0, K(m) = 0and K(FP) = 0.

Proof. In order to prove (5.4), by using the definition of Beta transform (5.1), the LHS of (5.4) becomes
B {5'-'_'“: (I+m,$;¢;vz) : 1, ’m} = f; 11— ™ {F_"c (I+m,&;c _1.':]} dz

Now using the definition (1.12), we get

1 o

B e m by imf = [ 22— ) @, S‘f{;:;;ﬂ_’iﬁpj(':!)Hd:

o n=0
Interchanging the order of integration and summation and using beta integral, we get

B {5'-'_"{ (I+m, & c5vz): ’m}
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o

Y 1
B (f+ nc — &3 P)y" f ‘
= j_'_, o N <. :{—ﬂ—i 1—z m—1 .:1r_‘
Z:( ™ B(#,¢c— &) n! LJ ( )

n= o

N, BEE+nc— &)yt D(L+n)I(m)
=) @, B(b,c—4)  nl [l+n+m)

n=0
Then applying (1.4) and interpreting the right-hand side of the above equation, in the view of the definition (1.12), we
arrive at the required result (5.4).
Theorem 8. (Laplace Transform)

r{

r {:"_1‘ 5'-'_'“: (a, f:c1vz): 5'} = 1 5'-'_'“: (ﬂ?, I, cl] .. (5.5)

- 5‘/

where R(c) < R(4) = 0,R(1) = 0,R(m) = 0and R(P) = 0.

Proof. In order to prove (5.5), by using the definition of Laplace transform, the LHS of (5.5) becomes
£ {:"_1 5'-'_"{ (a, f:0;vz): 5} = J zimlgme= 5'-'_"{ (a, #:c;vz) dz

|:.
Now using the definition (1.12), we get

. P T = Sikf'"'[afi—mrs—«E‘ﬂ:?][k':]"
~1-1 L J— — ~I—-1 —=z Y - -
,-'_"{_ F; ELLf_.r_’:_._L_:I.S'} J z e E (a), Bt —8) — dz

o n=0

Interchanging the order of integration and summation and using Laplace transform, we obtain

oo ==

P Eikf'.'[«f"«—mr:—«f'*_:?]v" T
~1-1 L J— — Y - ~itn—-1 —==z .
,-'_"{_ o (a, b _.c_._u_).s} E (a), Bfc—6) — {J z e -:1’_]
|:.

n=0

_i( ) BYY (8 +n,c— &;P)y" T(1+n)
B o Bt c—4&) n! st

n=0
Now, making use of (4) and after straightforward calculation we finally arrive at (5.5).
Theorem 9. (Whittaker Transform)

o

J #2=15=551 1 /-_.“(cir){Sif"{f'"'(ﬂ,af‘*.:a.: wl‘)}ﬂrl‘

|:.
1., LS L L
_ T Gruete) F(E 1te) o |@(grate)rlg-ute) b o - (5.6)
rfi—Ai+p) T c,(1—A+p); 5
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where H{u +p) = l,-“'z and 17 “ is the Whittaker confluent hypergeometric  function and
Ric) < R(4) = 0,R(p) = 0,R(5) = 0and R(P) = 0.
Proof. To prove Theorem 9, we use definition (1.12) in LHS of (5.6), we get

|:.
; = B (8 +nc —&:P) (wb)"
= | v e ow (8¢ z n - t
J e wu(8t) ) (a), Blé,c—4&) n!
o n=0
Setting ¥ = &t, we get
J p=1,=%5 1 1.8 { 5'—‘_"“ (@, #;c; cur)} dt
o s
T et L = BI (8 +n,c— 6:P) wmd"
[ _":W"ﬁz 5 P @V
J I:.j) e /_.F!E ) E('ﬂ).. Bl#,c—4&) 878 (n!)
o net
Interchanging the order of integration and summation, we get
J p=1,=%5 1 1 (81 { 5'—‘_"‘: (a,&;c; cor}} dt
o °
_ s i( ) B (#4+nc—&P) o |1 ge*nt o=, (9)} df
- 0 o B(#,c— &) G (n!) J T
n=0 ¢
Next, using the Whittaker transform (5.3), we get
J I—ﬁ_it:l_':-:-":: "'EL_J }-IH Edrj { :ll':rl:k-:’l (ﬂ_l __E‘q..: c; (Ur)} dr
|:.

& s

B c— &) &7 (n!) Mi—Ai+p+n)

R B¥ (g tnc—&P) " F(%—ﬂ—p—ﬂ] F(%—H—p—ﬂ]
=5 ~Z(.ﬂ)_ﬂ_ ~ \ \
n=0

Interpreting the right-hand side of the above equation, in the view of the definition (1.12), we arrive at the required result
(5.6).

Pathway Fractional Integration of the Extended Generalized Gauss Hypergeometric Function

The pathway fractional integral operator was introduced and studied by Mathai [13] and Nair and developed further by
Mathai and Haubold ([27, 28]) as follows.

Letf EL{a,b), nEC,dEe R withH(n) =0,a = 0,and @ < 1 be the pathway parameter. Then

lfpirr-n'--:'.'- f] () = ¢ J[m] ll B d(l—a)t

v
L 0 4 s it

1-a

flodr. - (6.1)
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where L{a, b) is the set of Lebsegue measurable function defined on (@, b). For a real scalar «, the pathway model for

scalar random variables is represented by the following probability density function ( p.d.f.):

F(t) =c|r|}'-1[1—d(1—aj|r|5]ﬁ . (6.2)

provided that —o0 <<t < 0,4 = 0,4 = 0, [1 — d(1 — a)|t|°] = 0 and ¥ = 0. Here ¢ is the normalizing constant
and c is called the pathway parameter.

For o = 0, (6.1) can be written as follows:

(P22 £) (5 = 7 (7501 [1 4 £DTR ) g ~(63)

For more details on the pathway model and its particular cases, the interested reader may refer to the recent work ([14],
[24], [27, 28]). It is observed that the pathway fractional integral operator (6.1) can lead to other interesting examples of
fractional calculus operators regarding some probability density functions and applications in statistics.

Our main result in this section is based on the following assertion giving a composition formula of the pathway fractional

integral operator (6.1) with a power function (see Nair [14, Lemma 9].

Lemma9. Letn € C,R(y) =0, €C,de R ande = 1. If R(B) = 0and R [;] = —1, then we have

s rp) r(1+ L)

[Pé;cd [rg 1]\] Elj — L 1l —a

. (6.4)

Now we are ready to present our result which is composition formula of the pathway fractional integration operator (6.1)

with a product of the extended generalized Gauss hypergeometric function (1.12) asserted by the following theorem.

Theorem 10. Let a < 1,m.p.ec Cwith H(n) =0, R(p)=0 and K [—] =—1. Also et

\1—a /

H(P) = 0,K(c) = R(H) = 0, then there holds the following formula:

(P2 [ 7 (a, 851 ) (0

ntp LN
B x p(p)p[]_ l—ncj |:c,L«E1'-Jp ; ex ] (65)

[d(1—a)] r(1+72—+p) o(1+25+p); d1-a)

Proof. By Applying (1.12), we have

(F.;E'G'd:' [r5‘1 ffkf-"[ci,f+_:c_:er)]:l (x) = (Péf'a'd'] [rﬁ_iz(ajn S}kf:l (b +nc—$P) et D (x)

\ B(&,c—4)

- Sik;_'-(,fk—n”:: —{"r_:?j e” e
— J _ P~_-'_.-'-“~'- A [pptn—l -
Zﬂwn SE (P ) )

Now applying Lemma 9 with £ replaced by & + # to the pathway integral, we obtain the following result
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Sikf'.' (f#+n,c—&P) "
B(#,c—4&) 7!

(= [ 559 (@ b1c5e8)] ) () = Y (@),

n=0

F(p—n)F[l— 1 ]

: 1—
|:|:1’(1—|:1:j]5‘-"’1"[:1—11Flr —p—ﬂ]

then, in view of (1.12), is easy to arrive at the expression (6.5). This completes the proof.

If we set @ = 0 and d = 1 and replacing by 7 — 1 in (6.5), then we have the following relationship:

(P £ (o) = J (t =07t f(Rdr = T([(1%F) ()] (R0 =0)  ..(66)

|:.
We obtain fractional integral formula involving left-sided Riemann-Liouville fractional integral operator stated in the
next corollary below.

Corollary 3. Let the parameters #,p.e € Cwith H(n) =0, H(p) =0,d=0. Also let
R(P) = 0,%(c) = R(#) = 0.Then we have the following relation:

----- ACRNC) ]
C(n+p) X 1% I:G,FETF_P:IF

[fé_'l [ xP1 5'-'_"{ (@, 4:¢c; E':L')D . (6.7)

Concluding Remarks and Observation
It is noted that the results obtained here are useful in deriving various fractional integral operators for each of the families

of the extended generalized hypergeometric functions F— k‘:"'(.] defined in (1.12).1t can be easily see that if we set

a =0,d=0,and f(t] is replaced by

2Fy (‘-*’.r + 6 -viml —EJ f(t)

(1.12) yields the Saigo fractional integral operator. Thus we can obtained the generalization of left-sided fractional

integrals, like Saigo, Erdélyi-Kober (see [1]; see also [30]), and so on, by suitable substitutions. Therefore, the results

presented here are easily shown to be converted to those corresponding to the above well known fractional operators.
Laplace, Beta and Whittaker transforms for extended hypergeometric functions are obtained as common converge.
Moreover, we investigated a composition of the pathway fractional integral operator with a product extended generalized
hypergeometric function (1.12).

It can be seen that the results obtained in this paper are new and effective mathematical tool and, also extension of many
results in literature.
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