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Abstract 

Extensions of number of well-known special function such as Beta and Gauss hypergeometric and their properties have 

been investigated recently by several authors.  Our approach is based on the use of Generalized Fractional Calculus 

(GFC) operators. We aim to investigate the MSM (Marichev-Saigo-Maeda)-fractional calculus operator, Caputo-type 

MSM-fractional differential operator and pathway fractional integral operator of the extended generalized Gauss 

hypergeometric function. Furthermore, by employing some integral transform on the resulting formulas, we presented 

some more image formulas. All the results derived here are of general character and can yield a number of (known and 

new) results in theory of special functions.  

Keywords: Gamma function, extended generalized beta functions, generalized hypergeometric functions, Extended 

generalized hypergeometric functions, Fractional Integral operators, integral transforms, Pathway fractional integral 

operator.  

Introduction 

Throughout this paper  and  denote the sets of positive integers, real numbers, complex numbers and non-

positive integers, respectively and . Extensions of a number of well known special functions were 

investigated by many authors (see, e.g. [1], [2], [4], [5], [6], [8] and see also, very recent work [7]). In particular, 

Chaudhary et al. [5] gave the following interesting extension of the classical Beta function   : 

 

 

where the Beta function  is a function of two variables and  defined by 

 

 

and  is the familiar Gamma function. 

In the sequel, in 2004, by making use of  Chaudhary et al. [6] extended the Gauss’s hypergeometric function as 

follows: 

http://www.ijergs.in/
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, 

where  is the pochhammer symbol or the shifted factorial, which is defined (for ) by (see [11]): 

 

 

Among several interesting and potentially useful properties for extended hypergeometric function  defined 

by (1.3), the following integral representing was also given by Chaudhary et al. [6]: 

 

  

 

The generalized hypergeometric series  is defined by (see [16]): 

 

Here p and q are positive integers or zero (interpreting an empty product as 1) and we assume that the variable z the 

numerator parameters  and the denominator parameters   take on complex values, provided that no 

zeros appear in the denominators of (1.6), that is  

1.7) 

Obliviously, for the Gauss hypergeometric function , we have  

 

In a similar manner, zergin et al. [4] introduced the following generalization of (1.1) (see, for detail [4],[22]). 

 

 

and   
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The following integral representation of the Pfaff-Kummer type was given by zergin et al. [4]: 

 

 

  

Very recently, Srivastava et al. [2] introduced a further natural generalization of (1.8) and (1.9), respectively, in terms of 

the function  defined as follows (see [2]): 

 

 

 

and  

 

 

where   is given by the following definition (see [2]): 

Definition: Let a function  be analytic within disk   and let its Tylor-Maclaurin 

coefficients be explicitly denoted by the sequence . Suppose also that the function  can be 

continued analytically in the right half plane  with the asymptotic properties given as follows: 

 

 

for the suitable constants  and  depending on essentially upon the sequence .Here we assume that the 

series in the first part of the definition (1.13) converges absolutely when  for some  and 

represents the function  which is assumed to be analytic within the disk  for some 
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 and which can be appropriately continued analytically elsewhere in complex z-plane with the order 

estimate provided in the second part of the definition (1.13). 

The outlined above-mentioned detailed and systematic investigation was indeed motivated largely by the demonstrated 

potential for applications of the more extended generalized Gauss hypergeometric function and their special cases in 

many diverse areas of mathematical, physical, engineering, and statistical science (see [2]).  

Let   with  and .Then the generalized fractional integral operators involving the 

Appell functions  are as follows: 

 

and  

 

The generalized fractional integral operators of types (1.14) and (1.15) have been introduced by Marichev [9] and later 

extended and studied by Saigo and Maeda [10].These operators are known as the Marichev-Saigo-Maeda operators 

(MSM-Operators). Recently, Mondal and Nisar [17], Nisar at el. [19] have been investigated the Marichev-Saigo-Maeda 

operators generalized Bessel function and k-Mittag Leffler function (see also [18]). 

The corresponding fractional differential operators have their respective forms: 

 

and 

 

The fractional integral operators have many interesting applications in various fields. For some results on fractional 

calculus, we refer to ([20, 21]). 

The following four results will be required (for the first and second, see [3]; for the third and fourth, see [12]). 

 

Lemma 1. Let  be such that  and . 

Then  

  

 

Lemma 2. Let  be such that  and 

. Then  
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Lemma 3. Let  with  and . Then  

 

  

In Particular  

  

 

and   

  

 

Lemma 4. Let  with  and . Then  

 

  

In Particular  

  

 

and   

 

                                                                     

MSM Fractional Integral Representation of the Extended Generalized Hypergeometric Function  

Here, in this section, we shall establish some fractional integral formulas for the extended generalized Gauss 

hypergeometric type functions . 

Theorem 1. Let ,  with  and 

. Then the following integral formula holds true: 
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Proof: For convenience and simplicity, we denote the left hand side of (2.1) by .Then applying (1.12), we have  

 

 

Interchanging the summation and integration, which is valid under the condition of Theorem 1, we find that 

 

Applying Lemma 1, we get 

 

 

 

 

Which, in view of (1.12), leads to the right-hand side of (2.1). This completes the proof. 

If we reduce MSM fractional integral in the Saigo fractional integral formula, then we arrive at the following result 

recently obtained by Choi et al. [7].  

Corollary 1. Let  with the parameters  satisfying the inequality 

Then the following fractional integral formula holds true: 

  

 

Theorem 2. Let  with  be such that 

. Then the following integral formula holds true: 
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Proof. We can establish (2.3) by a similar argument as in the proof of (2.1), using Lemma (2) instead of Lemma (1). 

Therefore, we omit its details. 

Interestingly, if we reduce MSM fractional integral operator in Saigo fractional integral operator, then, we arrive at the 

following result obtained by Choi et al. [7]. 

Corollary 2. Let  with the parameters  satisfying the inequality 

Then we have  

  

 

MSM Fractional Differential Representation of the Extended Generalized Hypergeometric Function 

In this section, we shall establish the Marichev-Saigo-Maeda fractional differentiation of the extended generalized Gauss 

hypergeometric type functions . For our purpose, the following Lemmas will be required (see [23]). 

Lemma 5. Let  be such that . Then  

 

 

 

Lemma 6. Let  be such that 

. Then  

 

 

 

Theorem 3. Let  and the parameters  be such that 

 Then we have  

 

 

Proof. Let  be the left-hand side of (3.3) and using (1.12), we have  
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Interchanging the summation and differentiation, which is valid under the condition of Theorem 3, we find that 

 

Next applying Lemma 5, we obtain 

 

 

 

 

which, in view of (1.12),we readily obtain the right-hand side of (3.3). 

Theorem 4. Let  and the parameters  be such that 

 Then we have  

 

 

 

Proof. The proof of the fractional integration formula (3.4) would run parallel to the proof of (3.3) by using Lemma (6). 

So, its proof details are omitted. 

 

Caputo-type MSM Fractional Differentiation Representation of the Extended Generalized Hypergeometric 

Function 

Rao et al. [15] introduced the Caputo-type fractional derivatives that have the Gauss hypergeometric function in the 

kernel. The Left-and right-hand sided Caputo fractional differential operators associated with the Gauss hypergeometric 

function are defined, respectively, by 
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and  

 

 

where   with  and  

The Left-and right-hand sided Caputo-type MSM fractional differential operators associated with Appell  are defined, 

respectively, by 

 

 

and  

 

 

where   with  and  

In this section we derive the left-and right-sided Caputo fractional differential formulas of the extended hypergeometric 

function (1.12). The following Lemmas given in (see [23]) are needed in sequel. 

Lemma 7. Let  and with  

Then  

 

 

 

 

Lemma 8. Let  and with   

 Then 
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Theorem 5. Let  and the parameters  

be such that Then there holds the following formula:  

 

 

 

 

Proof. For convenience, we denote the left-hand side of (4.3) by  Applying (1.12), we get 

 

Interchanging the order of summation and differentiation, which is guaranteed under the given condition of in this 

theorem, we find that 

 

Next using Lemma 7, we obtain 

 

 

Interpreting the right-hand side of the above equation, in the view of the definition (1.12), we arrive at the required result 

(4.3). 

 

Theorem 6. Let  and the parameters  

be such that  Then there holds the following formula:  
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Proof. The proof of the result (4.4) follows the same as that employed in the proof of theorem 5 and consequently, we 

omit the details.    

5. Integral Transform of the Extended Generalized Hypergeometric Functions  

In this section, the image of  under Beta, Laplace and Whittaker functions have been obtained. For our purpose, 

we begin by recalling some integral transforms. 

The Euler (Beta) transform of  is defined as [25]: 

 

Laplace transform of  is defined as [25]: 

 

The Whittaker transform is defined as [26]: 

 

 

where  and  is the Whittaker confluent hypergeometric function. 

Theorem 7. (Beta function) 

 

where   and  

Proof.  In order to prove (5.4), by using the definition of Beta transform (5.1), the LHS of (5.4) becomes 

  

Now using the definition (1.12), we get  

 

Interchanging the order of integration and summation and using beta integral, we get 
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Then applying (1.4) and interpreting the right-hand side of the above equation, in the view of the definition (1.12), we 

arrive at the required result (5.4). 

 Theorem 8. (Laplace Transform) 

 

 

where   and  

Proof. In order to prove (5.5), by using the definition of Laplace transform, the LHS of (5.5) becomes   

 

Now using the definition (1.12), we get  

 

Interchanging the order of integration and summation and using Laplace transform, we obtain 

 

 

Now, making use of (4) and after straightforward calculation we finally arrive at (5.5). 

Theorem 9. (Whittaker Transform) 
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where  and  is the Whittaker confluent hypergeometric function and 

 and . 

Proof. To prove Theorem 9, we use definition (1.12) in LHS of (5.6), we get 

 

Setting , we get 

 

Interchanging the order of integration and summation, we get  

 

Next, using the Whittaker transform (5.3), we get 

 

Interpreting the right-hand side of the above equation, in the view of the definition (1.12), we arrive at the required result 

(5.6). 

Pathway Fractional Integration of the Extended Generalized Gauss Hypergeometric Function  

The pathway fractional integral operator was introduced and studied by Mathai [13] and Nair and developed further by 

Mathai and Haubold ([27, 28]) as follows. 

 Let with , and  be the pathway parameter. Then 
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where  is the set of Lebsegue measurable function defined on . For  real scalar , the pathway model for 

scalar random variables is represented by the following probability density function ( p.d.f.): 

 

provided that ,  and . Here  is the normalizing constant 

and  is called the pathway parameter. 

For , (6.1) can be written as follows: 

  

For more details on the pathway model and its particular cases, the interested reader may refer to the recent work ([14], 

[24], [27, 28]). It is observed that the pathway fractional integral operator (6.1) can lead to other interesting examples of 

fractional calculus operators regarding some probability density functions and applications in statistics. 

Our main result in this section is based on the following assertion giving a composition formula of the pathway fractional 

integral operator (6.1) with a power function (see Nair [14, Lemma 9]. 

Lemma 9. Let  and  If   and  then we have  

 

Now we are ready to present our result which is composition formula of the pathway fractional integration operator (6.1) 

with a product of the extended generalized Gauss hypergeometric function (1.12) asserted by the following theorem. 

Theorem 10. Let with  and . Also let 

, then there holds the following formula: 

 

 

Proof. By Applying (1.12), we have  

 

 

Now applying Lemma 9 with  replaced by  to the pathway integral, we obtain the following result  
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 then, in view of (1.12), is easy to arrive at the expression (6.5). This completes the proof. 

If we set  and  and replacing  by  in (6.5), then we have the following relationship: 

 

We obtain fractional integral formula involving left-sided Riemann-Liouville fractional integral operator stated in the 

next corollary below. 

Corollary 3. Let the parameters with . Also let 

.Then we have the following relation: 

 

Concluding Remarks and Observation 

It is noted that the results obtained here are useful in deriving various fractional integral operators for each of the families 

of the extended generalized hypergeometric functions  defined in (1.12).It can be easily see that if we set 

 and  is replaced by  

 

(1.12) yields the Saigo fractional integral operator. Thus we can obtained the generalization of left-sided fractional 

integrals, like Saigo, Erd lyi-Kober (see [1]; see also [30]), and so on, by suitable substitutions. Therefore, the results 

presented here are easily shown to be converted to those corresponding to the above well known fractional operators. 

Laplace, Beta and Whittaker transforms for extended hypergeometric functions are obtained as common converge. 

Moreover, we investigated a composition of the pathway fractional integral operator with a product extended generalized 

hypergeometric function (1.12). 

It can be seen that the results obtained in this paper are new and effective mathematical tool and, also extension of many 

results in literature.  
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