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Abstract

In this paper, We speak the partial integration operator configuration formula referred to as Nair Because Channel with
the very last fabricated from the multivariate characteristic H and Generalized M series. Additionally, some exciting
outcomes are received in phrases of natural consequences, which include the Meijer G function, the Mittag-Leffler
feature, Bessel function and terrific longitudinal characteristic. We also obtained two essential formulations of formulas
concerning left-fractional elements Riemann-Liouville integrated in segment 5. All effects acquired right here are of a
widespread nature and may supply a positive number of results in special function theory.

Keywords: Pathway fractional integral operator, Multivariable H-function, Generalized M-series, Mittag-Leffler

function, Bessel-function, Hypergeometric function.

Introduction

Integrated operators with totally different special functions have found vital importance and applications within the
numerous subfields of mathematical analysis applied. In recent years, half calculus has become one in every of the
quickest growing fields of science and arithmetic. Over the course of 4 decades, variety of researchers like Choi et al. [4],
Saijo [18,19], Khan et al.. [3], Kryakova [11,12], Kilbas [23,24], Machado et al. [13,14], Calla [5,6], Calla and Saxena [8]
examined comprehensive the various properties, applications, and accessories of the many totally different pressure
gauges with the goal of partial integration. several half calculus applications may be found, for instance, in disturbances
and fluid dynamics, shape mechanics, random random dynamics, physics and controlled nuclear fusion, nonlinear

biological systems, uranology.

Let f(x) = L{a,b),a € C,H(a) = 0, then left sided Riemann-Liouville fractional integral operator defined as
. 1[ — )= F(t) dt 1
r(n;)J * 1)

|:.

(18 F) () =

For more details, we refer to Kiryakova [11], Kilbas-Srivastava-Trujillo [20] and Samko-Kilbas-Marichev [21] etc.

If F(t) isreplaced by t¥f(t) in (1), the above operator turns out to be Erdélyi-Kober fractional integral; if it is replaced

by - F; [n + B —vml— :] f(t), then (1) takes the form of Saigo hypergeometric fractional integral

T . r o
x—(r?—)g Ill:::g" flx)= J (x — )" ! 2Fy (TF + 5. —yim1 _EJ f(t) dt
E.

Many other operators generalized fractional calculus can be obtained if on the place of f(t) one takes ¢(t] as it is done

in Kiryakova [11] for a Fox’s H-function p(t) = H:E,,. (t).

Page24‘9

National Conference on Recent Innovations in Science and Technology (NCRIST-5-6 April 2019) organized by ACERC, Jaipur, Rajasthan, Page No. 249 - 260


http://www.ijergs.in/

Deepti Arora, et al. International Journal of Engineering Research and Generic Science (IJERGS)

The pathway fractional integration operator, as an extension of (1), is defined as follows [2, p.239]:

(B ]m-:«j

o

1-4

[?ﬁ] ll_dtlzijr Fodt )

where f(x) € L{a,b).n € C, H(n) = 0, d>0 and ‘pathway parameters’ 4 <
The pathway model is introduced by Mathai [25] and studied further by Mathai and Haubold [26, 27]. For real scalar 4,

the pathway model for scalar random variables is represented by the following probability density function (p.d.f.):
g

Flx) = clxl" M1 —d(1 - A)x]®]7, (3)

—wsx<xw,d =020 1—d(1—2)x|° =0 = 0, where c is the normalization constant is as follows:

L Slaa - BT (§+1E85+1
c=5 . 7 Cfaor A= 1, (4)
1_(5] T[l—z{_ l)
1
_; I—IE l_IxF.—'_ ] lj ES)
148 1E
_EUEB fori— 1. (6)

r(s)
For A < 1, it is a finite range density with 1 — d (1 — ;’Jlxl'5 = 0 and (3) remains in the extended generalized type-1

beta family. The pathway density in (3) for 4 < 1, includes the extended type-1 beta density, the triangular density, the

uniform density and many other p.d.f.
For 2 = 1, writing 1 — 4 = —(4 — 1), we have
B
Flx) =clxl" 1 +d(A— 1)]xl?] +1, (7)
—w<x <0 >0,0F =0, 4 =1, which is extended generalized type-2 beta models for real x. It includes the type -2

beta density, the F density, the Cauchy density and many more.

Here we consider only the case of pathway parameters 4 << 1. For 4 — 1 both (3) and (7) take the exponential form,

since

il

(1-D]F7

_limiclxl-"_i[l—cf[l—i]lxl'g] lm clx[" |1 —dnlx|®
A% £

=c|x|¥~ 1exp[ dnlx|® } (8)
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This includes the generalized Gamma-, the Weibull-, the Chi-square, the Laplace-, Maxwell-Boltzmann and other related
densities. Therefore, the operator introduced in this paper can be related and applicable to a wide variety of statistical

density.
When 4 — 1_ [1 - d":”"'"r ]"'F' —s 2797 Then, the operators (1) reduces to the Laplace integral transform of f with
the parameters 'j—
. "o dn dﬂ
L1} TN e ae T - — T
(RSVF) () _1-J % F(B)dt =71, (). (9)

0

Mathematical Prerequisites
The multivariable H-function is defined in terms of multiple Mellin-Barnes type contour integral as [1].

- (1} (1 i1
Iy (ﬂ_."-: C'tf_ll. ey C'tf_ll. } : (C‘J. : ?’:.' }

H[—_p - :.1-] — HE-.?!:!r!a_.r!a_: ATy

BqiPe s i Py : [b,{?'i ,S'] (d'id'i]
LA 4 4 ’1.!.',‘ o4 4 "'.I..L',‘-_
; (\er g ?{,-I:T'..\li N
T 10
(a6 (10)
A © Tlagr
L N TS B
Hlzy o z,]= Dk J J O(& ..¢.) [1:1[ @ (&) z Iﬂrh dé
where

(11)

o mEr(a? - 6] M (e o + )]
e 0T (67 = 28] [T (1= + 6776 Y

—_—

For i =1,..,7 and @ = + —1,L;, represents the contour which start at the point T, — cwzc and goes out the point

P
[}

1. + wx with 7, ER = (—==, ), = 1,...,7 such that all the poles of T(d:?i" - ﬁé,-‘:"t‘f;-lj =L..mg;i=1..,r

w4 &

are separated from those of T[l — CJ:-‘E" ¥ Lf;-],j =1,..,n;i=1,..,r and
l'fl —a;+ Xl rr:J:?i"mf:-]J j=1,..,n Here, the integers =, p,q,m,n.,p; and g, satisfy the inequalities

0=np;g=00=Xm<q,and0 = n, <p,

i =1, ..., 7. Further we suppose that the parameters
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aJ,-,j =1, ..p; .::J.“'Jj =1L..,psi=1..,r

bij=1,..q .:1’;.::".',3' =1,.,9;i=1,..,r (13)

are complex numbers and the related coefficients

cr:.".'Jj =1,..,m;i=1,..r7; «;.::".'Jj =1,..,p;i=1,..,r

B =1 g i=1,0r 87 =1, g5 1= 1,7 (14)

are positive real numbers.

We observe that for n = m = p = g = 0, the multivariable H-function breaks up in to product of + H -function and

consequently there holds the following result [7].

|:'_|_ |:'_|__'- |:_ i
:1 — (CI -:.:l;l ] (CI ::’I
_ 7 prlimgm Mo, i “1p A T Lpy
H[_'.I.-'"'-'_"']_HEE‘J.-.E' I r i 010 [ iy
1 1 .1 o L7
z,. |- [a’,. p ] (n’ g,
N4 -+ . N4 4 Mgy
@ W
! (cl -'Jf"l' ]
mpn; | |t R ¥
- H.‘Jz-c = (0 ol (15)
i (a;".6,7)

If we consider n =m = p = g = 0 and r = 1 then the multivariable H-function converts in to as single variable H-

function and it becomes

_— o [:ﬂ_ﬂ-:ﬂ_ﬂ} I T
HIz) = B 1 = B |2 | ol CCERS (16)
o o {_ﬂq_:ﬁq} 2w )
where
- IMZ, rip+g;s) M, ri1-a;—a;)
5‘(":) - j?:m+:r|1_b-:__g-:_”;.| ] ::-'::;-'-_+-'_ rl I:_;'_C:'_;'E__I (l?j

m,mp.g ENy with 1= n<p,1=m =g, ch,-,,BJ,- £H. and a;, lv;:,- ceR(i=1,...;j=1,...,q) and £ is a
suitable contour which separating the poles of I'(b; + f,%) from poles [T7=; (1 —a; — a;2) .
Wright [22] defined generalized hypergeometric function by means of the series representation in the form

(ay.Ay), . (a,4,) _ - ITZ, Tla +n4) 2"
(by, By), -, (by, By) _E_H?q I(b; +nB;)n!

n=

(18)

W (2) = ¥y l

where z, a;, b},- EC A, B € K.(i=1...mj=1...q),

q )
z B; —Z_q:. =—1 (19)
i=1 i=1

Sharma and Jain [9] introduced the generalized M-series as the function defined by means of the power series:
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5 (2) = M (g oy by, by32) = 56 ((@)73(5)752)

(ﬂ-l:'m--u(.ﬂ,}“ :."
n=0 (ﬂ'ljr!i"'.l 1 } T(C'I!:fi. 18) E_HJSE“"’HI:“:] }'Dj (2{))

where (a;) ,(b;) are known Pochammer symbols. The series (20) is defined when none of the parameters

E-::,:sj J=1.2,..,q is a negative integer or zero; if any numerator parameter a; is a negative integer or zero, then the
series terminates to a polynomial in z. The series in (20) is convergent for all z if p = g, it is convergent for
|z| =& =a® if p =q + 1 and divergent, if p = g + 1. When » = ¢ + 1 and |z| = §, the series can converge on
conditions depending on the parameters. Properties of M-series are further studied by Saxena [10], Chouhan and Sarswat
[17] etc.

The generalized M-series (20) can be represented as a special case of Fox H-function (16) and Wright generalized

hypergeometric function (18), as

g.-'lrff [i[::-i'{j}p.: [:b,-}q.: ::] =A _1_1—11![’
1 1

+

(ay, 1), .., (a,, 1), (1.1);

o Eb‘li l:]i e [.1':.'-":., l}i E,S,r’."t::l_:_
(':L —a,1; 1}'”, (0,1)

- 2
T lon(-61)7.0-pa) =

where A = —;
—le- _1'I|:
The generalized Mittag-Leffler function, introduced by Prabhakar [32] may be obtain from (21) for

p=g=La=vEC;b=1, as

Yo (z) = L:"_ C (), "
E.;_«.s(—j mzc_l’(mm—ﬁ)m! (]_) r(ﬂm }9)

—Df.';rf (1:1:z2) (22)

The new generalization Mittag-Leffler function in terms of H-function is defined as

. 11. _ (1—y, 1)
225 =555 12 [~ 01, (1 g

The present paper is organized as follows. The composition of pathway integral operators (2) with multivariables H -

] (e, B,y EC; Rla) = 0) (23)

function, Mittag-Lefter, Bessel- function are given in section 3. Section 4 investigates the pathway fractional integration
of generalized M-series and finally the further special cases in section 5 and concluding remark are drawn in section 6.
Fractional Integration of H-function via Pathway Model

Recently pathway fractional integral operators involving the various special functions have been considered by many
author (see, eq., [29, 30, 31]). Our main result in this section is based on the following assertion giving a composition

formula of the pathway fractional integration operator (2) with a power function (see Nair [2, Lemma 1]).
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Lemmalletn € C,R(n) =0, €Cand i = 1. IFR(F) }Gandiﬁ( ] = —1, then we have

*TEL(B) T(1+ 125)
[_]} = (24)

(p7 [} () = ]

Now we are in a position to state and prove our main result, which is a composition formula of the pathway fractional

integration operator (2) with a finite product of multivariable H-function (10) asserted by the following Theorem.

Theorem 1. Llet A=<1,u>=0d=0,1>0, the parameters =z, mpeC(i=1,..,v),H(n) =0 and

R (:] = —1, then there holds the following formula:

BT (0t HldFtEz,, ., dRt4 2, ])

d“t*z, -
e T(l— l.}ij_\] OmE Lo i {E(l_ .H{:I} El_.l':'.:.l[i.l ---”“).u [f\'ﬂ_lf.: 'n:_j:'i.l.l ---JﬂJ::!.I_jJ_lu
— L £ gomdlimyng luime ny : N N 2
[E(l — f‘l)]ﬂ PrLg+lig, g ieiPrdy APt z, lzbj.: JBJ:TI_'J ...JJIQJ:T".'IJ , [_% — piit, "'H“j
:['.:‘:.:1'.'.:}'::1 ( SV ]
) J, : J, .31"3' ) J, , J, .ZL"J\- 25
: (dl.‘i'l_:ﬁ:fi'l] _ [d:?;-_-.:a:?;-_-z] E j

i
LR 4 v LR 4
lg. lar

Proof. Let 33 be the left-hand side of (25). By applying (10) and using (2) to left hand side of (25), then we have

-

Ezuéwrf“[e@“ﬂjHI%@J[ }Idn dE, x B (et T fim1)

Now we apply Lemma 1 to use (24) with £ replaced by (o + u X-, &.) to pathway integral, after a little simplification,

we obtain the following result

-

5= EEIT]::L:)-" J J 0, ..¢.) H_[ @; (&) [:d“::'}i} déy .. dé,

~yr

o pnretuEl, & ( Tlo +u2iz ) 1_(1_ 1E ] )
= 1atn TTE . .
L1 = AT semes 1_[’0_ 1E g HaXif l]

then, in view of (10), interpreting the involved Mellin-Bernes contour integrals in term of Multivariable H-function, we
readily obtain the right hand side of (25).

Setting n =2 =g = 0 in (25) is seen to break the multivariable H-function in (15) into an r-times product of H-

functions yield an interesting result asserted by the following Corollary 1.
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Corollary 1. Let A=<1,u=0d=01>0, the parameters z, 7 pcC(i=1,..,r),H () =0 and

H (:] = —1, then there holds the following formula:

L 1 . lf c: .: ?::::'__.:]1 J
o ) Pidi fdd}

lag

gnTe T [l 1 Ti ,rl:] 0 4:{mgn ) dHt*z, (= pithy ) (C ':?:'.“. ]1-1

H - -
[1(1— A)]° 11y ﬂ} {(1- 1) (- n o) (dP569)
O ) oD /1.q;

(26)
If we observe that for m = p = g = 0 and r = 1, the multivariable H-function reduces in to single variable H-function

and consequently there holds the following Corollary.

Corollary 2. Let A=1,x=0,d=>01>0, the parameters z.n.pC.H(n) =0%K(p) =0 and

K (1:,1. ] = —1 ,then we obtain

pirA (et in (gupnz))
_r’?‘ﬁT[l—l?i,i:]XH d¥thz (1-p.u) (ay a,)
TG 71 (1= DY (——15 = o). (b, 65)

R |

(27)

Setting ct; = 1'51.- = 1 in the Corollary 2, yields the following result.

Corollary 3. Let A=<1,1x>0,d=>0,1>0, the parameters z.n.pcC,H(n) = 0H(p) =0 and
R (:] = —1, then we obtain

pniY {t771G" (d ez )}

i—-‘.“ﬁ]’(l_%\] ARt = ( _Pu[i): (ﬂ)i
— h - lF A X G_‘]"':;ii g [28)
(1= 1) 21— 2} ( u). (b))
Interestingly, on
settingm=1L,p=1ln=1qg=2pu=1lz=-Ya =1-ya, =1 b=0F=1b=1-§§,=a,

then Corollary 2 and consequently there holds the following result.

Corollary 4. Let A =1,d > 0,1=>0, the parameters a. S.v.n.p €C,H(a) = 0,%(n) = 0.H(p) =0 and

K (:] = —1, then we have

255
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(A [ o—1p¥
P, {r Eﬂ,lg(vrdj}

r"-“ﬁl'(l— 1)

_ 1 — A 1.2
TTha-anrrg) s

(1—p1),(1—y,1) P —vid ‘
(29)

E'Djlj, [_% — A lJJ El _JS.I "-T:I.: {j-ll:l - ";'L:l}

Further, if weset m=1n=0p=0,g=0u=2b,=005,=1b,=v5,=1p=0c =1 in Corollary 2,
then we obtain the following Corollary.
Corollary 5. Let the condition of Corollary 2 be satisfied then the equation (26) reduces to the following result.

P (o) (dtz))

zd
- (?J i=npF= 1%

(o0 +13,2) : 2222
(ﬁ—l,ljJ[l—%—a—ﬁ,z] afl(1- ,a)}] (30)

where [, (z } is the ordinary Bessel function of first kind (Olver [15]).

Corollary 6. Let the condition of corollary 2 be satisfied and on setting
m=1n=1p=1l1¢g=2,0,=1—-a,a,=1b,=0F,=0b,=1—-cu=1F =1 z = -V, then
equation (26) reduces to the following formula:

Pcf:::.a.::- {(t771,F,(a; c; dt¥))

B rrr—.ﬁl_[l—%)r(p] ‘s i, (p%lﬁr D ved "
na - (e ) el +e+1):00-2] (31)

Provided H(n) = 0, H(a) }Gandiﬁf( ] = —1.

Fractional Integration of Generalized M-series via Pathway Model

In this section we consider composition of the pathway fractional integral P.:F_"'"}""'.' given by (2) with the generalized M-
series (20).

Theorem 2. Let4 < 1, x4 = 0,d = 0,1 = 0, the parameters z ., 5, v. 1. p € C and K(n) = 0,

Kie) =0, R(p) =0 Hf ] = —1, then the following formula holds:

(A Lo—1 yoas e [l - 1 i .-E.:J E?:'l l_[b_.'}
RIS @)~ 1w

Lyes dAbtH = El_PJHjJEl_ﬂ:)"iJ (l::l.ll:l

H .- : o 32
X pti.gt3 {:?(l_"{)} (_—_J':'JJH] (Gll)J(l_BJﬂ)J[_l_bj}i. E j

The converges condition for the validity (32) are as follows

HoEm=g.0=n=pfora,b € Candfore, f; ER. = (0,x) (i=1,...p;j =1,...q).
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(i) £ = £, _ is a contour starting at the point ¥ — =0 and going to ¥ + = where ¥ € C (—2z, «c), such that all the

poles of [(b; + f8,£).7 = 1, ..., m are separated from those T(1 —a; — a,&),i = 1, ..., 7.

. . . 1 = [ M
The integral converges if & > 0, largz| < Sma,a = 0ando = X7, o, — Ej:.u.—i @+ Xty B — Zf:m_i B;.

Proof. For convenience, let the left hand side of (32) be denoted by . Applying (20) and using (2) to left hand side of
(32), then we have

0= N (Hijm (HJ}"" (d#:)-‘-"! (m.Adl) gt pm—
0= £ (By) [bc}“ T(em + B) X [Py (¢ 1y

Now we apply Lemma 1 to use (24) with £ replaced by (o + wm) to pathway integral, after a little simplification, we

obtain

- _ e [l 1 Ti A]Eazir[b} i I'(a, +m) T'(p+ um)
C [-DF I, T(a) L T(b +m)T(am+p)

I_(L— +um+1

\l_j. 4

: ][zipf Aj

which, upon using definition of H-function (16), yields (32).

Several illustrative examples of Theorem 7 involving appropriately chosen special values of parameters can also be
derived fairly easily.

Further Special Cases

By setting A =0, =1 and 7 — 1 — 1 in (25) and (32) respectively, and applying the following easily derivable

relation:

)

(RI™%F) 0 = [ @-0" @ dr=T0) (RO,  (E0)>0)

We obtain two fractional integral formulas involving left-sided Riemann-Liouville fractional integral operator stated in
the next Corollaries below.

Corollary 7. Let A < 1,1 =0,d = 0,1 = 0, the parameters z,,7,p EC (i=1,..,7),C(n) = 0,C(p) = 0 and

0 (T] = —1, then the following relation

A
Lo {t" Hld t#zy, ..., d*t#z,]}
z

l(b-'.:fg::i:li JJS:1:J1 :El — N — P i .--”[Ij
q

w4 F 4

.. H

= t5 +n-1 1—(”) HE‘..“!—'.I.:.‘."!.-_.."!.-_: TP M

prlg+lip, 0. adBegy
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(C.il.l }:.jii i, (c ¥ ]13 dth z,

" o 33
(ﬂr Vgt (n’ g ] drth (33)
\ e Lo 5. 7
holds.

Corollary 8. Let A < 1, = 0,d = 0,1 = 0, the parameters z ., 5, v.,n. 2 € C and C(n) = 0,

C(a) =0,C(p)=0CL [ - ] = —1.Then the following formula relation:

f,g'_"_{rﬂ‘i “pME (d“r”:)} = I(n j ;Egil
- - El_piﬁi:]:(l_ﬂ:jp:(‘]:lj
1pt2 —dH# 1
. H;_:Iq_ ‘ (l — 0= .I“:I-' ('D,l:l, (l - 18-' ﬂ:]J I:l - b}-‘}f E34j
holds.

Remark. It is noted that if we set A = 0,1 = 1 and £(t) is replaced by »F, [r.r + B —yiml —:] f(t) dt, (2) yields

the Saigo fractional integral operator. Thus we can obtain the generalizations of left-sided fractional integrals, like Saigo,

Erdélyi-Kober (see [28]; see also [20]), and so on, by suitable substitutions. Therefore, the result presented here easily

shown to be converted to those corresponding to the above well known fractional operators.

Concluding Remarks

We conclude this analysis by noting that the results obtained here are of a general and helpful nature to derive multiple

integral formulas within the theory of integrated micro-channel equation. during this article, we have a tendency to

conferred the syntax for aliquot integral for a mechanical phenomenon that has a operate Fox H and M series. The leads

to this text are vital and you'll realize an application in resolution differential equations. From an aliquot arrangement that

arises in theory from special functions. Associate in nursing integral channel operator with many special functions given

as special cases to our main findings.
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