

International Journal of Engineering Research and Generic Science (IJERGS) Available Online at www.ijergs.in

Volume - 5, Issue - 2, March - April - 2019, Page No. 165 - 172

Modified Low-Power and Area-Efficient Carry Select Adder using D-Latch

Monika Tanwani, Smriti Jain, Khushboo Joshi

Assistant Professor, Department of ECE, Arya College of Engineering and Research Centre, Jaipur

Abstract

Carry Select Adder (CSLA) is one of the high speed additives used in many computer systems for fast calculations. The modified CSLA architecture was developed using a binary to Excess-1 (BEC) converter. This article suggests an effective method to replace BEC with Lock D. Experimental analysis shows that the proposed structure achieves the three folded advantages in terms of surface, delay and power.

KEYWORDS: CSL, BEC, VLSI, MIMO

Introduction

One of the foremost vital areas of analysis in VLSI style is that the design of logical systems for high-speed, energyefficient path knowledge. In digital additives, the speed of the addition is proscribed by the time needed to unfold the relay through the snake. The ad of every bit position in an exceedingly preliminary announcement is formed consecutive solely once the previous bit position is extra and captive to future position

CSLA is employed in several calculation systems to mitigate the matter of delayed readying of domains by making multiple domains severally, then choosing a port to get the combination. The CSLA offers a compromise between Ripple Carrier (RCA) with alittle however longer delay and a bigger space with short forward forwarding. CSLA uses many pairs of rderle carry adder (RCA) to get the partial quantity and tolerance by considering getting into Cin = zero and Cin = one load, then the ultimate quantity and cargo are determined by multiples. CSLA changed mistreatment BEC reduced extent and energy consumption with a small increase in delay, the essential plan of the projected structure is that that replaces BEC with lock D with a verification signal. The projected structure reduces area, delay and power.

Literature Review

Bedriji 1962 proposes [1] that the problem of carry propagation delay is overcome by independently generating multiple radix carries and using these carries to select between simultaneously generated sums. Ramkumar et al 2010 proposed a BEC method to reduce the maximum delay of carry propagation in final stage of carry save adder [2]. Ramkumar and Harish 2011 [7] propose BEC technique which is a simple and efficient gate level modification to significantly reduce the area and power of square root CSLA.

BEC

To reduce the area and power consumption of regular CSLA, RCA with Cin=1 is replaced with BEC. An n+1 bit BEC replaces the n bit RCA. The function table of a 4-b BEC is shown in Fig. 1 and Table 1 respectively. By the use of BEC logic, we can reduce the significant amount of silicon area reduction in the VLSI design. The Boolean expressions of the 3-bit BEC are given below.

 $S0 = \sim B0 S1 = B0 \land B1$

 $S2 = B2 ^ (B0 \& B1)$

Fig. 1: 4-Bit BEC

Table 1: Function Table of the 4-Bit BEC

B[3:0]	X[3:0]
0000	0001
0001	0010
-	-
-	-
-	-
1110	1111
1111	0000

Regular SQRT CSLA

The CSLA sixteen structure with traditional SQRT is shown in Figure five. it's 5 teams of RCAs of assorted sizes. Figure two shows the delay and house assessment for every cluster, wherever the numbers between [] verify the delay values. The calculated implementation from the last stage, i.e. the smallest amount vital bit stage, is employed to see the particular calculated values for the outputs and therefore the add of the outputs, the selection is formed mistreatment the multiplier factor, the inner structure of cluster two of the regular 16-bit CSLA is shown in Figure three. By manually hard the amount of gates employed in cluster two is fifty seven (full and 0.5 snake and multiplexer), one in all the inputs goes to electronic device from RCA with Cin = zero and therefore the different input from RCA with Cin = one Group2 contains 2 sets of RCA 2-b. The time for choice entry c1 [time (t) = 7] of 6: three mux is before s3 [t = 8] and once s2 [t = 6], therefore add3 [t = 11] is that the sum of s3 and mux [t = 3] and sum2 [t = 10] is the sum of c1 and mux.

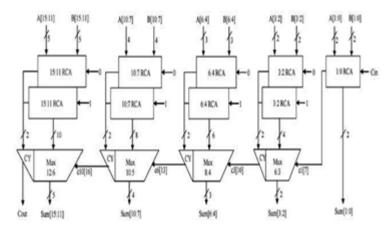


Fig.2: Regular 16 bit SQRT CSLA

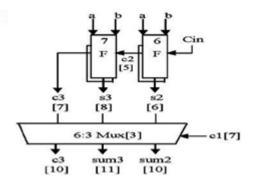


Fig.3: Group 2

Modified CSLA Using BEC

The structure of the proposed 16-b SQRT CSLA using BEC for RCA with Cin=1 to optimize the area and power is shown in Fig. 4. We again split the structure into five groups. The delay and area estimation of each group 2 is shown in Fig. 5. One input to the mux goes from the RCA with Cin=0 and other input from the BEC. Comparing the group 2 of both regular and modified CSLA, it is clear that BEC structure reduces the area and power. But the disadvantage of BEC method is that the delay is increasing than the regular CSLA.

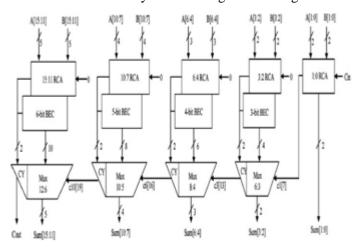


Fig. 4: CSLA using BEC

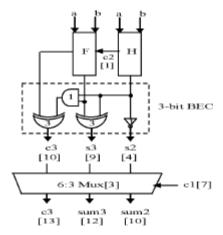


Fig. 5: Group 2

Modified 16-Bit CSLA Using D-Latch

This method replaces the BEC add one circuit by D-latch with enable signal. Latches are used to store one bit information. Their outputs are constantly affected by their inputs as long as the enable signal is asserted. In other words, when they are enabled, their content changes immediately according to their inputs. D-latch and it's waveforms are shown in Fig.6 &7.

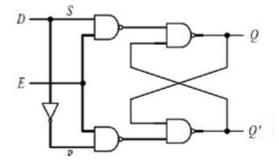


Fig.6: D-Latch

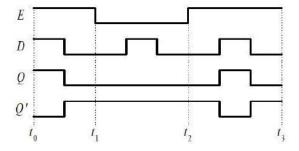


Fig.7: Input and output wave forms

The design of projected 16-b CSLA is shown in Fig. 8. it's different 5 teams of various bit size RCA and D-Latch. rather than exploitation 2 separate adders within the regular CSLA, during this technique only 1 adder is employed to cut back the realm, power consumption and delay. every of the 2 additions is performed in one clock cycle. this can be 16-bit adder during which least vital bit (LSB) adder is ripple carry adder, that is a pair of bit wide. The higher half the adder i.e, most vital half is 14-bit wide that works in step with the clock. Whenever clock goes high addition for carry input one is performed, once clock goes low then carry input is assumed as zero and add is hold on in adder itself. From the

Fig. it will perceive that latch is employed to store the add and carry for Cin=1 and cin=0.Carry out from the previous stage i.e, least vital bit adder is employed as management signal for electronic device to pick out final output carry and add of the 16-bit adder. If the particular carry input is one, then computed add and carry latch is accessed and for carry input zero mutual savings bank adder is accessed. Cout is that the output carry.

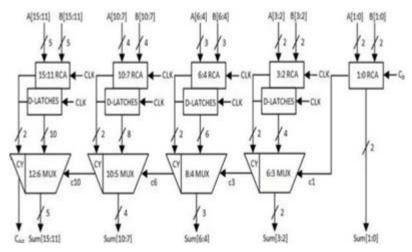


Fig.8: Modified CSLA using D-Latch

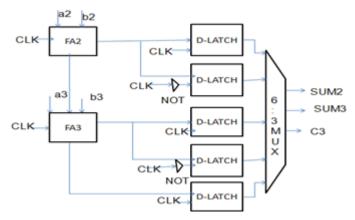


Fig. 9: Group 2

The Fig.9 shows the interior structure of cluster a pair of of the projected 16-bit CSLA. The cluster a pair of performed the 2 bit addition that are a2 with b2 and a3 with b3. this can be done by 2 full adder (FA) named FA2 and FA3 severally. The third input to the complete adder FA2 is that the clock rather than the carry and also the third input to the full adder FA3 is the carry output from FA2. The cluster a pair of structure has 5 D-Latches during which four are used for store the sum2 and sum3 from FA2 and FA3 severally and also the last one is employed to store carry. electronic device is employed for choosing the particular total and carry consistent with the carry is coming back from the previous stage. The 6:3 electronic device is that the combination of 2:1 multiplexer. once the clock is low a2 and b2 are additional with carry is up to zero. thanks to low clock, the primary D-Latch isn't enabled. The second D-Latch store the total wit cin =0 by victimisation inverted clock modify. once the clock is high, the addition is performed with carry is up to one. the opposite D-Latches enabled and store the total and carry for carry is up to one. consistent with the worth of c1 whether or not it's zero or one, the electronic device hand-picked the particular total and carry.

Simulation Results

Waveform

Fig.10: Regular SQRT CSLA Simulation

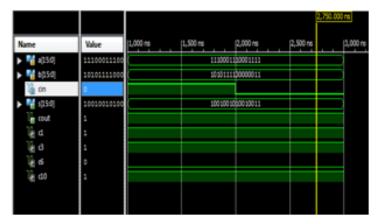


Fig.11: CSLA using BEC

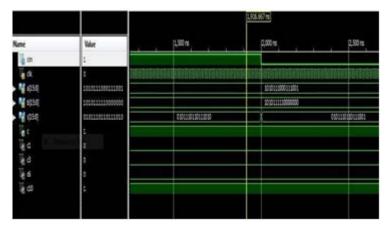


Fig. 12: Modified CSLA using D-Latch

Power Report

<u> </u>	Power S	upply S	ummary			-1			
I	3	Total	Dynam	La I	Quie	scent			
Supply Power (m	(R)	1710.63	1654.	98 (55.6	S 1			
					Davis	w Commit			7557448
					Fowe	r Suppl	y Curi	rer	its.
					FOWE	er Suppi	y curi		its
 Supply Sour Supply Sour	ce			1 T					
Current (mA) Qu						Current		1	
Current (mA) Qu		Current	(mA) [i		Current	(mA)	1	

Fig .13: Power report of Regular SQRT CSLA

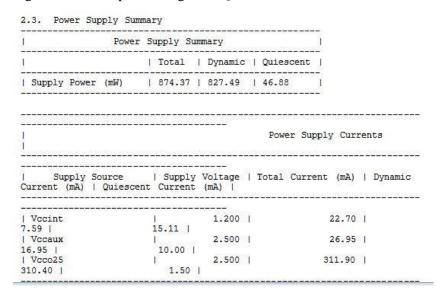


Fig.14: Power report of CSLA using BEC

l Powe	er Supply Su	ummary					
Ĭ	Total	Dynami	:	Quiescent	Ĺ		
Supply Power (mW)	324.21	281.48		42.73			
				Power Sup	pry Cur	ren	LS
 Supply Source Current (mA) Quiesc]				
Current (mA) Quieso	cent Current	(mA)				ļ	
Current (mA) Quieso		(mA)	i		ent (mA)	I.	
Supply Source Supply Source Vecint (mA) Quiesc Vecint Vecint Vecint Vecint Vecint	cent Current	1.200	1		ent (mA)		

Fig .15: Power report of Modified CSLA using D-Latch

Table 2: Comparision

Adder(16-bit)	Delay(ns)	Power(mW)	PDP(x10^-12)
Regular SQRT CSLA	20.7	1710.63	35410.04
CSLA using BEC	21.598	874.37	18884.64
Modified CSLA using D-Latch	17.84	324.21	5783.906

Conclusion

A simple approach is planned during this paper to scale back the world and power of SQRT CSLA design. The reduced variety of gates of this work offers the good advantage within the reduction of space and conjointly the whole power (Table II). The changed CSLA reduces the world and power in comparison to regular CSLA with increase in delay by the utilization of Binary to Excess-1 device. This paper proposes a theme that reduces the delay, space and power than regular and changed CSLA by the utilization of D-latches.

References

- 1. O. J. Bedrij, —Carry-select adder, IRE Trans. Electron. Comput., pp. 340–344, 1962.
- 2. B. Ramkumar, H.M. Kittur, and P. M. Kannan, —ASIC implementation of modified faster carry save adder, Eur. J. Sci. Res., vol. 42, no. 1, pp. 53–58, 2010.
- 3. T. Y. Ceiang and M. J. Hsiao, —Carry-select adder using single ripple carry adder, Electron. Lett., vol. 34, no. 22, pp. 2101–2103, Oct. 1998.
- 4. J. M. Rabaey, Digtal Integrated Circuits—A Design Perspective. Upper Saddle River, NJ: Prentice-Hall, 2001.
- 5. Y. He, C. H. Chang, and J. Gu, —An area efficient 64-bit square root carry-select adder for low power applications, in Proc. IEEE Int. Symp. Circuits Syst., 2005, vol. 4, pp. 4082–4085.
- 6. Ramkumar, B. and Harish M Kittur, (2011) _Low Power and Area Efficient Carry Select Adder', IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.1-5.