

International Journal of Engineering Research and Generic Science (IJERGS) Available Online at www.ijergs.in

Volume - 5, Issue - 2, March - April - 2019, Page No. 79 - 88

A Study on Mechanical Properties of Cement Concrete by Partial Replacement of Fine Aggregates with Bottom Ash

Hemant kumar sain, Sarjeet singh yadav, Shailendra Upadhay, Anil Sharma

Assistant Professor, Department of Civil Engineering, Arya College of Engineering and Research Centre, Jaipur, India

Abstract

Bottom ash is a new highly available waste. It is a solid residue located at the bottom of the furnace in the large modern thermal power plants. It represents approximately 20% of the total ash content of the coal introduced into the boilers. The direct use of these materials in large quantities will provide a solution for their elimination and the possibility of using them as substitute materials in the construction. The main objective of this research is to study the behaviour of a concrete mix including the partial replacement of soft aggregates by bottom ashes against normal concrete. The study was conducted using coal ash as a partial substitute with fine rubble in the 20%, 30%, 40% and 50% by weight concrete mix. The different characteristics of the force studied are composed of the compressive strength, the bending force and the tensile force. The results showed that the compressive force, the tensile force and the bending force decreased as the ash replacement ratio was lower than the simple concrete. It has been observed that up to 20% of the results of the pressure test, the bending test and the tensile test are approximately the same as for the controlled concrete.

Keywords: Coal bottom ash, Compressive test, Flexural test, Split tensile test.

Introduction

Cement is the most widely used building material in the world and the second most consumed source of water, producing more than six billion tons per year. It has emerged as the dominant building material for infrastructure needs of the 21st century. The challenge for future civil engineers is to design the project using high performance materials at a reasonable cost and with less impact on the environment. Large quantities of waste are generated by solid waste incinerators in manufacturing, service and municipal waste. Waste is gaining interest in the use of materials as an alternative to natural aggregates or cement in concrete. The use of waste not only helps in the cement, concrete and other building materials, but also reduces the costs of the cement and concrete industry, but also has many indirect benefits, such as the low cost of land use, energy saving and environmental protection against the possible impacts of pollution. Coal is mainly used as a solid fuel to produce electricity and heat by combustion. It is one of the most important energy sources in the world, supplying about 41% of the world's electricity. In India, more than 70% of the energy generated is generated by the burning of fossil fuels, about 61% of which is from coal-fired plants. Coal production in India currently stands at 557.45 million tonnes per year, up 3.2% from the previous year, making it the third largest producer in the world.

The growing demand for electricity has led to the construction of coal-fired power plants. As coal consumption has increased, coal and its by-products have also increased. Ashes should be discarded either dry, in an open area near the plant, or by mixing fly ash and heavy ash with water and pumping into an industrial lake or landfill. The removal of this large amount of ash has taken thousands of hectares of land, including farmland and forests, and has also resulted in pollution of the water bodies. If these by-products are not used properly, there will be insufficient space available and

disposal of these by-products will be a problem. To minimize these effects, the best solution is to promote the use of large scale coal ash. The use of a large amount of bottom ash can mitigate or solve disposal problems and the associated environment. Coal ash is the residue from burning coal or lignite in thermal power plants, these residues or by-products are called coal combustion products or CCPs. In a dry bottom boiler, about 80% of the ash or unburned coal is drained into the flue gas and captured as fly ash. The remaining 20% of the ashes are the dry ashes collected at the bottom of the oven. This study describes the effect of the mechanical properties of concrete in which the smooth aggregate is partially replaced by varying proportions.

Literature Review

The experimental investigations by **Bakoshi et al.**^[1] used bottom ash for his study in the amounts of 10–40% as replacement for fine aggregate. Test results indicate that the compressive strength and tensile strength of bottom ash concrete generally increases with the increase in replacement ratio of fine aggregate and curing age. The freezing thawing resistance of concrete using bottom ash is lower than that of ordinary concrete and abrasion resistance of bottom ash concrete is higher than that of ordinary concrete.

The experimental investigations by **Mohd Syahrul Hisyam bin Mohd Sani, Fadhluhartini bt Muftah**, **Zulkifli Muda** (2010) ^[2]presents the use of Washed Bottom Ash (WBA) as fine aggregate in special concrete. To substitute amount of carbon usage in concrete the bottom ash was utilized and fully submerged in water for 3 days to produce as WBA with low carbon composition. The aim of the study is to investigate the feasibility and potential use of washed bottom ash in concreting and concrete applications. The results of the physical and chemical properties of WBA were discussed. Different concrete mixes with constant water to cement ratio of 0.55 were prepared with WBA in different proportions as well as one control mixed proportion. The mechanical properties of special concrete with 30% WBA replacement by weight of natural sand is found to be an optimum usage in concrete in order to get a favorable strength and good strength development pattern over the increment ages.

Siddique, R (2003) ^[3]conducted experimental work on the effects of furnace bottom ash on workability, compressive strength, and permeability, depth of carbonation and chloride penetration of concrete. The natural sand was replaced with furnace bottom ash by 30, 50, 70 and 100 % by mass at fixed free w/c ratio of 0.45 and 0.55 and cement content of 382 kg/m3. The results showed increase in the workability of concrete, and decreased compressive strength, at fixed cement content and w/c ratio. No adverse influence on the long-term strength was observed. Air permeability, sorptivity and carbonation rate for bottom ash concrete was higher as compared to control concrete. However the chloride transport coefficient decreased with the increase of the replacement level up to 50%, beyond which it increased. A lightweight concrete using flyash (FA), furnace bottom ash (FBA) and Lytage (LG) as a replacement of OPC, natural sand and coarse aggregate respectively was manufactured.

Experimental Investigations

Materials

Cement: Ordinary Portland Cement of 53 grade was used in the study. Testing of cement was done as per IS: 8112-1989. The various tests results conducted on the cement are tabulated in Table 1.

Table 1: Properties of cement

S. No.	Characteristics	Values obtained	As per IS: 8112-1989
1	Normal consistency (%)	32	-
2	Initial setting time (minutes)	40	Not less than 30
3	Final Setting time (minutes)	380	Less than 600
4	Fineness (%)	3.5	<10
5	Specific gravity	3.06	3.15

Coarse Aggregate: Locally available coarse aggregates having the maximum size of 10 mm and 20mm were used in the present study. The testing of coarse aggregates was done as per IS: 383-1970. The results of various tests conducted on coarse aggregates and sieve analysis of 20mm and 10mm aggregates are tabulated in Table 2 and Table 3 respectively.

Table 2: Sieve analysis of 20 mm aggregates

				Cumulative % age	
Sn.	Sieve No. (mm)	Mass Retained (g)	Percentage retained	Retained	Percentage Passing
1.	40	-	-	-	-
2.	20	-	-	-	-
3.	12.5	980	49.49	49.49	50.51
4.	10	670	33.83	83.32	16.68
5.	4.75	330	16.66	99.98	0.02
6.	Pan	0	-	-	-

Table 3: Sieve analysis of 10 mm aggregates

	Sieve No.	Mass Retained (kg)	Percentage	Percentage	Cumulative
SN.					
			Retained, %	Passing, %	%age Retained
1	40	-	-	-	-
2	20	-	-	-	-
3	10	482	24.12	75.88	24.12
4	4.75	1452	72.67	27.33	96.79
5	Pan	64	3.2	96.8	99.99

Fine Aggregates: The sand used for the study was locally procured and conformed to grading zone II as per IS: 383-1970 having specific gravity of 2.67 and fineness modulus 3.66. The maximum size of fine aggregate was taken to be 4.75 mm. The sieve analysis results are shown in Table 4.

Table 4: Sieve analysis of Conventional Sand

				Cumulative	
		Mass Retained	Percentage		
Sl. No.	Sieve size (mm)			Percentage	% Passing
		(g)	Retained, %		
				Retained	
1	4.75	28.27	2.84	2.84	97.16
2	2.38	31.55	3.17	6.01	93.99
3	1.18	137.5	13.85	19.86	80.14
4	0.600	296	29.82	49.68	50.32
5	0.300	390	39.30	88.98	11.62
6	0.150	105.14	10.59	99.57	0.43
7	0.075	2.35	0.235	99.80	0.2
8	Pan	1.51	0.151	-	-

Bottom Ash: The bottom ash was procured from the Bellary Thermal Power Station, Kuditini village, Bellary, Karnataka. The specific gravity of bottom ash is 1.86. The testing was done as per IS: 383-1970. The sieve analysis results are shown in Table 5

Table 5: Sieve analysis of bottom ash

Sl. No.	Sieve size	Mass Retained	Percentage	Cumulative	Percentage finer
	(mm)	(g)	retained	%age	
1.	4.75	0	0	0	-
2.	2.38	12.96	2.5	2.5	97.5
3.	1.18	41	8.2	10.7	89.3
4.	0.600	91.11	18.24	28.94	75.06
5.	0.300	150.28	30.09	59.03	40.97
6.	0.150	106.32	21.28	80.31	19.69
7	0.075	84.84	16.99	97.3	2.7
8	Pan	12.84	2.5	99.8	0.2

Water: Potable water which is free from salts and impurities was used for washing aggregates, mixing and curing purposes.

Mix Design and Proportions: The control mix containing cement, natural sand and coarse aggregates was designed as per Indian Standard Recommended Guidelines IS: 10262-2009. Natural sand was partially replaced with bottom ash in the range of 0%, 20%, 30%, 40% and 50% by weight. The designed mix proportion for normal concrete is 1:1.38:1.83 with water cement ratio of 0.42. In this study five mix proportions were made. First was control mix and the other four mixes contained bottom ash which was partially replaced with fine aggregates. Nine cubes were casted for each percentage of bottom ash replaced with fine aggregate. The mix proportions are given in Table 6

Table 6: Mix proportion of M40 grade concrete

	Course	Course		
Fine				
	Aggregate	Aggregate	Bottom Ash	Water
Aggregate			3	
3	(10mm)	(20mm)	Kg/m	(lts)
kg/m	Kg/m ³	Kg/m ³		
718	380	570	0	197
575	380	570	143	197
503	380	570	215	197
431	380	570	287	197
359	380	570	359	197
3	559	380	380 570	359 380 570 359

Preparation and Casting of Test Specimen

The concrete cubes of standard size of 150mm were cast for compressive strength test, the concrete beam of 100mm×100mm×500mm for tensile test, cylinders of size 150 mm diameter and 150 mm lengths for splitting tensile test. Concrete of specified proportions was prepared and filled in the mould and compacted preferably on a vibrating table. After compaction the specimen was leveled. The specimens were demoulded and immersed in water at a temperature of 27±2°C for 24hrs from the time of addition of water to the ingredients. At the age of testing, the specimens were taken out of the water, wiped and tested. All the specimens were prepared in accordance with Indian Standard Specifications IS: 516-1964.

Concrete Properties: The fresh concrete properties such as slump was conducted and the hardened properties such as compressive strength, flexural strength and tensile strength were performed for 7, 28 and 56 days at varying percentages of bottom ash in accordance with the provisions of the Indian Standard Specification IS: 516-1959.

Results and Discussions

Workability: Slump was conducted on the plain concrete and the concrete mix containing various percentages of bottom ash. The test results are shown in Table 7. It is observed that the slump decreases with the increasing percentage of replacement of fine aggregates with bottom ash. As the replacement level increases, a greater amount of water is required for the mix to get closer. This is due to the extra fineness of the bottom ash.

Table 7: Measure of workability

		Designation of the Specimen				
SN.	Name of the test	NC	ix-1	Mix-2	Mix-3	Mix-4
1	Slump Flow(mm)	75	71	68	72	67
2	Vee-Bee consistometer(sec)	5	5.8	6.1	6	6.7

Compressive strength: The compressive strength of concrete mixes made with various percentages of coal bottom ash as fine aggregate replacement and the conventional mix were tested at the age of 7, 28 and 56 days of curing. The test results are shown in the table 8. From the obtained results it can be seen that the strength decreases as the percentage of the bottom ash is increased. The bottom ash gained the strength at a slower rate in the initial period and acquires strength at a faster rate after 28days (above the targeted strength).

Table 8: Compressive strength of various mixes with age

	Average compressive strength (N/mm²)				
Mix Type	7 days	28 days	56 days		
NC (0%)	38.22	48.7	54.22		
Mix-1 (20%)	34.88	45	53.54		
Mix-2 (30%)	30.44	43.40	50.05		
Mix-3 (40%)	28.90	42.58	49.10		
Mix-4 (50%)	27.50	40.79	47.13		

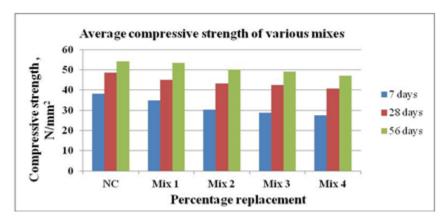


Fig 1: Graph showing Compressive Strength of Different Mixes

Flexural Strength: The flexural strength of concrete mixes made with various percentages of coal bottom ash as fine aggregate replacement and the conventional mix were tested at the age of 7, 28 and 56 days of curing. The test results are shown in the table 9. From the obtained results it was observed that the flexural strength of concrete decreases with increasing percentage of bottom ash. It may be due to the poor interlocking between the aggregates. However, the strength gains with the age.

Table 9: Flexural strength of various mixes with age

Mix Type	I	Average flexural strength (N/mm²)				
	7 days	28 days	56 days			
NC (0%)	10.45	11.20	12			
Mix-1 (20%)	9.30	10.50	11.92			
Mix-2 (30%)	9.06	10	11.16			
Mix-3 (40%)	9.01	9.72	10.96			
Mix-4 (50%)	8.9	9.4	10.23			

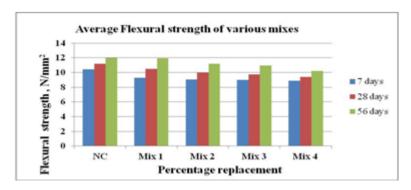


Fig. 2: Graph showing flexural Strength of Different Mixes

Splitting Tensile Strength: The tensile strength of concrete mixes made with various percentages of coal bottom ash as fine aggregate replacement and the conventional mix were tested at the age of 7, 28 and 56 days of curing. The test results are shown in the table 10. From the obtained results it is observed that the tensile strength of concrete decreases with the increasing percentage of bottom ash. However, the strength increases with the age of the curing. The strength gain is more at higher age of curing but the strength gain decreases at higher percentage of replacement.

Table 10: Split tensile strength of various mixes with age.

	Average split tensile strength (N/mm²)				
Mix Type	7 days	28 days	56 days		
NC (0%)	2.91	3.97	4.52		
Mix-1 (20%)	2.19	3.81	4.27		
Mix-2 (30%)	1.99	3.27	3.98		
Mix-3 (40%)	1.79	2.77	3.45		
Mix-4 (50%)	1.72	2.06	3.04		

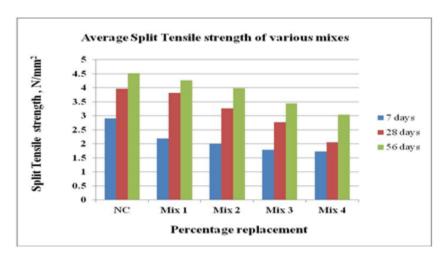


Fig 3: Graph showing tensile strength of Different Mixes

Conclusions

- The compressive strength of the plain concrete specimen for 7days, 28days and 56days was found to be 38.22 N/mm², 48.7 N/mm² and 54.22 N/mm² respectively. The 28days strength of the mix is 48.7 N/mm² which concludes that the mix has reached the targeted strength (M40).
- The 28days flexural strength of concrete with bottom ash has a reducing strength of 10.5, 10, 9.72, and 9.4 N/mm² for 20%, 30%, 40% and 50% of replacement of bottom ash with fine aggregates. This concludes that the 28days flexural strength of plain concrete has higher value of 11.2 N/mm² when compared with the concrete specimens replaced with bottom ash.
- The 28days Split Tensile strength of concrete with bottom ash has a reducing strength of 3.81 N/mm², 3.27 N/mm², 2.77 N/mm² and 2.06 N/mm² for 20%, 30%, 40% and 50% of replacement of bottom ash with fine aggregates. This concludes that the 28days split tensile strength of plain concrete has higher value of 3.97 N/mm² when compared with the concrete specimens replaced with bottom ash
- The workability of the fresh concrete decreases with the increasing percentage of bottom ash.

References

- 1. T. Bakoshi, K. Kohno, S. Kawasaki, N. Yamaji, Strength and durability of concrete using bottom ash as replacement for fine aggregate, ACI Spec. Publ. (SP-179) (1998) 159–172.
- 2. Mohd Syahrul Hisyam bin Mohd Sani, Fadhluhartini bt Muftah and Zulkifli Muda "The Properties of Special Concrete Using Washed Bottom Ash (WBA) as Partial Sand Replacement", The International Journal of Sustainable Construction Engineering & Technology Vol 1 No 2, December 2010, 65 76
- 3. Siddique, R., Effect of fine aggregate replacement with class F fly ash on the abrasion resistance of concrete, Cement and Concrete Research, 33(2003) 1877-1881.
- 4. Mohammed Maslehuddin, Abdulaziz, Al-Mana, Mahammed Shamim and Huseyin Saricimen, Effect of sand replacement on the early age strength gain and long term corrosion resisting characteristics of fly ash concrete, ACI Materials Journal, Jan-Feb (1989) 58-62.

- 5. Swami, R.N., Sami A.R. Alli and Theodorakepoulos D.D, Early strength fly ash concrete for structural application, ACI Material Journal, Sept-Oct (1983) 414-422.
- 6. Ghafoori N. and Bucholic, J., Properties of high-calcium dry bottom ash concrete, ACI Materials Journal, 94 (1997)90-101.
- 7. Swami, R.N., Sami A.R. Alli and Theodorakepoulos D.D, Early strength fly ash concrete for structural application, ACI Material Journal, Sept-Oct (1983) 414-422.
- 8. Naik, T.R. and Ramme, B.W., High strength concrete containing large quantities of fly ash, ACI MaterialsJournal, March-April (1989)111-116.
- 9. IS: 10262-1982. Recommended guidelines for concrete mix design, Bureau of Indian Standards, New Delhi, India.
- 10. IS 383-1970 Specifications for coarse and fine aggregates from natural sources for concrete, Bureau ofIndian Standards, New Delhi, India.
- 11. IS: 516-1959.Indian standard code of practice methods of test for strength of concrete, Bureau of IndianStandards, New Delhi, India.