} International Journal of Engineering Research and Generic Science (IJERGS)

ijergs Available Online at www.ijergs.in
ISSN: 2455 - 1597

Volume -2, Issue-5, September - October 2016, Page No. 38 - 45

Design of High Secure Authentication using SHA3-1024 Algorithm for Digital Signatures

Parshetty Santhosh Kumar?, Pathloth Krishnamurthy?
PG Scholar, Department of ECE, Brilliant Institute of Engineering and Technology, Hyderabad, India

?Assistant Professor Department of ECE, Brilliant Institute of Engineering and Technology, Hyderabad, India
E-Mail 1d: psk5000@gmail.com

Abstract

SHAZ3 algorithm had proposed by five people with five different approaches. In that NIST (National Institute of Standards
and Technology) selected one approach .that approach proposed by Keccak .after that Keccak sha3 algorithm using with
memories but it will take more area so in our paper we are designing 128 bit Keccak sequential architecture .sha3

having different variants like sha224,sha256,sha512,shal024.we are implementing shal024 variant using Xilinx 13.2.

Keywords: Theta, Rho, Pi, Chi, lota.

1. Introduction

MDS5 is one in a series of message digest algorithms designed by Professor Ronald Rivest of MIT (Rivest, 1992). When
analytic work indicated that MD5's predecessor MD4 was likely to be insecure, Rivest designed MD5 in 1991 as a secure
replacement. (Hans Dobbertin did indeed later find weaknesses in MD4.)In 1993, Den Boer and Baseliners gave an early,
although limited, result of finding a "pseudo-collision" of the MD5 compression function; that is, two
different initialization vectors which produce an identical digest. In 1996, Dobbertin announced a collision of the
compression function of MD5 (Dobbertin, 1996). While this was not an attack on the full MD5 hash function, it was close
enough for cryptographers to recommend switching to a replacement, such as SHA-1 or RIPEMD-160.The size of the
hash value (128 bits) is small enough to contemplate a birthday attack. MD5CRK was a distributed project started in
March 2004 with the aim of demonstrating that MD5 is practically insecure by finding a collision using a birthday attack.
SHA-1 produces a message digest based on principles similar to those used by Ronald L. Rivest of MIT in the design of
theMD4 and MD5 message digest algorithms, but has a more conservative design. The original specification of the
algorithm was published in 1993 under the title Secure Hash Standard, FIPS PUB 180, by U.S. government standards
agency NIST (National Institute of Standards and Technology). This version is now often namedSHA-0. It was withdrawn
by the NSA shortly after publication and was superseded by the revised version, published in 1995 in FIPS PUB 180-1
and commonly designated SHA-1. SHA-1 differs from SHA-0 only by a single bitwise rotation in the message schedule of
its compression function; this was done, according to the NSA, to correct a flaw in the original algorithm which reduced
its cryptographic security. However, the NSA did not provide any further explanation or identify the flaw that was
corrected. Weaknesses have subsequently been reported in both SHA-O and SHA-1. SHA-1 appears to provide greater
resistance to attacks. SHA-2 is a set of cryptographic hash functions designed by the NSA (U.S. National Security
Agency).[3] SHA stands for Secure Hash Algorithm. Cryptographic hash functions are mathematical operations run on
digital data; by comparing the computed "hash™ (the output from execution of the algorithm) to a known and expected
hash value, a person can determine the data's integrity. For example, computing the hash of a downloaded file and

Corresponding Author: Parshetty Santhosh Kumar, Page No. 38 - 45

Page3 8

http://www.ijergs.in.org/
http://ijergs.in:2095/cpsess5183353844/3rdparty/squirrelmail/src/compose.php?send_to=psk5000%40gmail.com
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ronald_Rivest
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/Hans_Dobbertin
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/RIPEMD-160
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/MD5CRK
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

comparing the result to a previously published hash result can show whether the download has been modified or tampered
with.[4] A key aspect of cryptographic hash functions is their collision resistance: nobody should be able to find two
different input values that result in the same hash output.SHA-2 includes significant changes from its predecessor, SHA-1.
The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.SHA-256 and SHA-512 are novel hash functions computed
with 32-bit and 64-bit words, respectively. They use different shift amounts and additive constants, but their structures are
otherwise virtually identical, differing only in the number of rounds. SHA-224 and SHA-384 are simply truncated
versions of the first two, computed with different initial values. SHA-512/224 and SHA-512/256 are also truncated
versions of SHA-512, but the initial values are generated using the method described in FIPS PUB 180-4. SHA-2 was
published in 2001 by the NIST as a U.S. federal standard (FIPS). The SHA-2 family of algorithms are patented in US
6829355. The United has released the patent under a royalty-free license. In 2005, an algorithm emerged for finding SHA-
1 collisions in about 2000-times fewer steps than was previously thought possible.[6]Although (as of 2015) no example of
a SHA-1 collision has been published yet, the security margin left by SHA-1 is weaker than intended, and its use is
therefore no longer recommended for applications that depend on collision resistance, such as digital signatures. Although
SHA-2 bears some similarity to the SHA-1 algorithm, these attacks have not been successfully extended to SHA-2. In
October 2012, the National Institute of Standards and Technology (NIST) chose the Keccak algorithm as the new SHA-3
standard. Keccak offers many benefits, such as performance and good resistance traits. In this article, | take a concise look
at Keccak's workings. | examine its engine and see how it renders the message text into a hash. In addition, | compare
Keccak against SHA-1 and SHA-2 using four standard tests. A notable problem with SHA-1 and SHA-2 is that they both
use the same engine, called Merkle-Damgard, to process message text. This means that a successful attack on SHA-1
becomes a potential threat on SHA-2.Consider SHA-1 for instance. A brute force attack usually takes at least 280 rounds
(a round is a single cycle of transformation of the interim hash value) to find a collision in a full-round SHA-1. But in
February 2005, Xiaoyun Wang and colleagues used a differential path attack to break a full-round SHA-1, and it took only
269 cycles to succeed. That same attack was later corroborated by Martin Cochran in August 2008.In 2012, Mark Stevens
used a series of cloud servers to perform a differential path attack on SHA-1. His attack produced a near-collision after
258.5 cycles. He also estimated a modified attack can manage a full-collision after 261 cycles. As to SHA-2, the only
successful attacks were those against a limited round SHA-2 hash. The most effective attack was against a 46-round SHA-
2 (512-bit variant) and against a 41-round SHA-2 (256-bit variant). It took 2253.6 cycles to break the 256-bit variant and
2511.5 cycles for the 512-bit variant. The fact remains that, while no successful attacks against a full-round SHA-2 have
been announced, there is no doubt that attack mechanisms are being developed in private. This is one reason why NIST

sponsored the SHA-3 competition, which led to the development and recent adoption of Keccak.

2. SHA3

To be considered for the SHA-3 standard, candidate hash functions had to meet four conditions set by NIST. If a
candidate failed to meet these conditions, it was disqualified: The candidate hash function had to perform well regardless
of implementation. It should expend minimal resources even when hashing large amounts of message text. Many

proposed candidates were actually unable to meet this requirement. The candidate function had to be conservative about

© IJERGS, All Rights Reserved.

Page 3 9

https://en.wikipedia.org/wiki/SHA-2#cite_note-4
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
https://en.wikipedia.org/wiki/SHA-2#cite_note-6
https://en.wikipedia.org/wiki/Digital_signature

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

security. It should withstand known attacks, while maintaining a large safety factor. It should emit the same four hash
sizes as SHA-2 (224-, 256-, 384-, or 512-bits wide), but be able to supply longer hash sizes if need be. The candidate
function had to be subjected to cryptanalysis. Both source code and analytical results were made public for interested
third-parties to review and comment. Any weaknesses found during analysis were to be addressed, through tweaks or
through redesign. The candidate function had to exercise code diversity. It could not use the Merkle-Damgard engine to
produce the message hash. The SHA-3 competition saw 51 candidate functions enter the first round of evaluations. Out of
those, 14 managed to advance to the second round. Round three saw the candidates whittled down to five. And from those
five, Keccak was declared the winner. Keccak is recognized as a new Secure Hash Algorithm-3 i.e. SHA-3 [3] announced
by NIST. Gilles Van Assche, Guido Bertoni, Michael Peeters and Joan Daemen designed and proposed the construction of
Keccak Hash function. The Keccak-f permutation is the basic component of Keccak Hash function and supports 224-bit,
256-bit, 384-bit and 512-bit hash variants. It consists of number of rounds and each round is the combination of logical
operations and bit permutations. Keccak is generated from sponge function with Keccak [r, c] members. It is categorized
by these additional functions i.e bit rate (r) and capacity (c). The addition of r + ¢ gives width of the Keccak function
permutation and is it is further limited to values as indicated 25, 50, 100, 200, 400, 800, 1600. The Keccak team
introduced the Keccak [1600] function for SHA3 proposal with different values of °r” and ’c’. Keccak [1600] was selected
because of its increased number of rounds in order to provide improved security margin. For 256-bit hash value r = 1088
and ¢ = 512. For 512-bit hash output, the values of r and ¢ are 576 and 1024 respectively. The 1600-bit state matrix of
Keccak composed of 5x5 matrixes of 64-bit words. Initially, the message block should undergo the inversion procedure so
that last byte should come first and first byte should become last. Every single compression function of Keccak composed
of 24 rounds and each round is sub-divided into five steps i.e. Theta (®), Rho (p) and Pi (x), Chi (y), Iota (i) explained in

below section
Theta (O) Step

Theta function comprises of three equations that involves simple XOR and bitwise cyclic shift operations. Equation (1)
involves the XOR operation between lanes (set composed of 64-bits along the constant x and y co-ordinates) of each row
of the state matrix A that results in five output lanes. Initially left circular shift will be applied on the five output lanes in
such a way that last lane becomes first and second last lane becomes last lane in (2). After that right circular shift will be
carried out on the lanes so that first lane becomes the last and second lane becomes the first lane and then left circular shift
will be applied on each lane in order to change the positions of the bits within each lane. Equation (3) of Theta just

involves XORing between the input state matrix and output lanes obtained from (2).

Theta step consists of three main steps in terms of equations that mainly require bitwise XOR operation. Equation (1)
involves bitwise XOR operation between the 64-bit lanes of each row where every lane of each row is independent of
each other so parallel operations can be applied on these lanes. We have used conventional 64-bit XOR operator in
parallel to perform XORing between the five lanes in each row of the state array A’ and results are stored in intermediate
registers. The above parallel XOR operations make our design fast and more efficient in terms of performance. Second

step (2) of step theta involves one bit left circular rotation which is accompanied by simple rewiring or replacing the bit

© IJERGS, All Rights Reserved.

Page4‘ 0

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

pattern of each row, then XORed with the previous output lanes. The results are stored in an intermediate registers in the
form of five lanes. These lanes are again XORed with input state matrix A[x, y] to form new 5 x 5 state matrix A’[x,y].

All the operations are done on modulo 5.

C[X] = A[X.0] ® A[X,1] ® A[X.2] & A[X.3]

@ A[X4] 0<X<4 (1)

D[X] = C[X -1]® ROT(C[X +11]) 0<X<4 (2)

A[X, Y] = A[X, Y] ® D[X] 0<X. Y<4 (3)
W_..‘! H|||W.

Nl

;ZT_.‘_‘
J‘——
.
['1—3—4
.J., _‘-ﬂ_
i

fu EZYQ;L@;L@;L&B e | Gt e}‘ Gl) Goell 1
I —L»@ul:jw(:[G ej @J :)

| |
[« Lo o 5] lul*l‘l‘l*lilm;bl L EEEREE

(4

Rho (p) and Pi () Step

The next two steps Rho (p) and Pi () can be expressed jointly by (4) that compute an auxiliary 5 x 5 array B from the
state array "A’. The operation of Rho (p) and Pi (m) take each of the 25 lanes of the state array ’A’, perform circular

rotation on it by the fixed number of values depending upon the ’x’ and ’y’ co-ordinates i.e r[X, y] given in Table I [3]

Page4‘ 1

© 1JERGS, All Rights Reserved.

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

(called Rho (p) step) and then place the above rotated lanes at the different location in the new array B (called Pi () step).
Note that all the indices are taken modulo 5.

TABLE L THE CYCLIC SHIFT OFFSETS "R(X, Y)”
FOR KECCAK

X=3 X={ X=0 X=1 X=2
¥=2 25 39 3 10 43
=] 55 20 36 44 6
r=0 28 27 0 l 62
r=4 56 14 18 2 61
F= 21 8 41 45 15

B[Y.2X +3Y] =ROT(A[X, YL.i[X.Y]) 0<X Y<4 (4)

Chi (y) Step

The Chi () step operates on the lanes, i.e. words with 64-bits and manipulates the B array obtained in the previous Rho
(p) and Pi (m) step and replaces the result in the state array A. We can say that the Chi (y) step takes the lane at location
[x,y] and XOR it with the logical AND of the lane at address location of [x+1,y] and the complement at location [x+2,y].
Following equation is illustrating the function Chi ().

A[X,Y]=B[X,Y]® ((NOT B[X+1,Y])
AND B[X+2,Y]) 0<X,Y<4 (5)

lota (i) Step

The lota step is the simplest step of Keccak algorithm. It just performs the XOR operation of predefined 64-bit constant

RC given in [3] with the lane at location [0,0] of the new state matrix *A’.

A[0,0] = A[0,0] @ RC (6)

© IJERGS, All Rights Reserved.

Page4‘ 2

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

theta Note: All buses size are 64 hits unless specified otherwise
A7 1600 Mumibers are location of register,

2 .2|22 12|IL"|-1II.‘I|1l||||l!l|.l[i|ju 20|IU|UU|

T

14
56
]
<1k
]
1
15
<45
=l
w»
<25
waadl
<10
<X
<55
l‘
<
3
43
i
1
]

Y _ ¥ ¥ v v
I|l]l|-l[i|\|l|.’.[i|lll|lli

T T
‘ 10TA
l (_ﬁq—kmnd_c\msum

r
1z (I2|4IIJI‘ZI|1IIIJI|4II|."U ZII‘IU|DO‘

In this work, we present an iterative design of SHA-3 512-bit for compact implementation as shown in Fig. The
architecture has 128-bit input data just to save extra input bits. The next block in proposed design is padder block which
pads the required number of zeros with the input data in order to form 1600-bit state and then inversion is applied on each
byte. The output from the padder block is forwarded to 2 x 1 Multiplexer (MUX) which drives the output data from
padder to the compression-box of the architecture and selects the input data for the first round and feedback data for other
twenty three rounds of Keccak with the help of controlling signal (Ctrl 1). When Ctrl 1 is low, MUX select the input data
and at high, MUX will select the feedback data. First padded message is directly copied to Reg A which previously
initialized with all zeroes and resulting bits are forward to Compression-Box (CBox). It is basically the implementation of
compression function in SHA-3 algorithm which comprises of theta (®), rho (p), pi (), chi (y) and iota (i) step. For
performance, we logically optimized our design by implementing rho (p), pi (=) and chi () steps as a single step. This
results in saving of hardware resources in term of 48 slices. After completing 48 iterations, final output is forwarded to
Reg B for storage in order to synchronize the data-path. The last component in the architecture is Truncating component

where inversion per byte is performed on the output bits and then truncated to the desired length of hash output.

Page4‘ 3

© IJERGS, All Rights Reserved.

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

128bitkeccak sequential architecture

Input Drata

i‘IEB

| Padder |

lauut
Ccii 1 S MU ;

1600

" 1600
P’ Reg A |
.l 1600)

- n
Round Constants —~— CU‘“!:E;SBS;D; Box plImiIx
™ i 1800 1 !
Reg_B
{ oo
Truncating

¢ 1024

Cutput (hash value)

3. Simulation Waveforms

B msgin(1274]

@ dk

LG it
B shaout103340)
& clk_period

4. Conclusion

The SHA 3 algorithm provides a good security for the data using the authentication format by generating hash code. Our
logical optimization by merging the three transforms i.e. rho, pi and chi in to single transform and by exploring maximum
parallelism in the algorithm are contributing factor And the whole design has a simple hardware structure and fast running

speed and can be widely used in digital signatures and 3DES key generation systems.

© IJERGS, All Rights Reserved.

Page4‘ 4‘

Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

5. References
[1].X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4, md5, haval-128 and ripemd,” IACR,
August 2004.

[2]. National Institute of Standards and Technology (nist), “Cryptographic hash algorithm competition,” 2007.
[3]. FIPS-202, “Federal information processing standards publication fips-202, secure hash algorithm-3 (sha-3),” 2014.

[4]. Xilinx, “Virtex 2.5 V field programmable gate arrays”. [5] F.R. Henrquez, A.D. Prez, N.A. Saqib, and C.K. Koc,

Cryptographic Algorithms on Reconfigurable Hardware. Signals and Communication Technology, Springer, 2007.

[6]. S. Kerckhof, F. Durvaux, N.V. Charvillon, F. Regazzoni, G.M. de Dormale, and F.X. Standaert, “compact fpga
implementations of the five sha-3 finalists,” Springer Berlin Heidelberg, vol. 7079, pp. 217-233, 2011.

[7]. A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient hardware implementations of high throughput sha-3 candidates
keccak, luffa and blue mid night wish for single- and multi-message hashing,” ACM, pp. 168-177, 2010.

[8]. K. Gaj, E. Homsirikamol, and M. Rogawski, “Comprehensive comparison of hardware performance of fourteen
round 2 sha-3 candidates with 512-bit outputs using field programmable gate arrays,” 2ndSHA-3 Candidate Conference,
pp 23-24, August 2010.

[9]. B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. ONeill, and W.P. Marnane, “FPGA implementations of
the round two sha-3 candidates,” The second SHA-3 Candidate Conference, 2010.

Page4‘ 5

© IJERGS, All Rights Reserved.

	2. sha3
	3. Simulation Waveforms
	4. Conclusion
	5. References

