
International Journal of Engineering Research and Generic Science (IJERGS)
Available Online at www.ijergs.in

Volume -2, Issue-5, September - October 2016, Page No. 38 - 45

Corresponding Author: Parshetty Santhosh Kumar, Page No. 38 - 45

Pa
ge

38

ISSN: 2455 - 1597

Design of High Secure Authentication using SHA3-1024 Algorithm for Digital Signatures

Parshetty Santhosh Kumar 1, Pathloth Krishnamurthy2
1PG Scholar, Department of ECE, Brilliant Institute of Engineering and Technology, Hyderabad, India

2Assistant Professor Department of ECE, Brilliant Institute of Engineering and Technology, Hyderabad, India

E-Mail Id: psk5000@gmail.com
Abstract

SHA3 algorithm had proposed by five people with five different approaches. In that NIST (National Institute of Standards

and Technology) selected one approach .that approach proposed by Keccak .after that Keccak sha3 algorithm using with

memories but it will take more area so in our paper we are designing 128 bit Keccak sequential architecture .sha3

having different variants like sha224,sha256,sha512,sha1024.we are implementing sha1024 variant using Xilinx 13.2.

Keywords: Theta, Rho, Pi, Chi, Iota.

1. Introduction

MD5 is one in a series of message digest algorithms designed by Professor Ronald Rivest of MIT (Rivest, 1992). When

analytic work indicated that MD5's predecessor MD4 was likely to be insecure, Rivest designed MD5 in 1991 as a secure

replacement. (Hans Dobbertin did indeed later find weaknesses in MD4.)In 1993, Den Boer and Baseliners gave an early,

although limited, result of finding a "pseudo-collision" of the MD5 compression function; that is, two

different initialization vectors which produce an identical digest. In 1996, Dobbertin announced a collision of the

compression function of MD5 (Dobbertin, 1996). While this was not an attack on the full MD5 hash function, it was close

enough for cryptographers to recommend switching to a replacement, such as SHA-1 or RIPEMD-160.The size of the

hash value (128 bits) is small enough to contemplate a birthday attack. MD5CRK was a distributed project started in

March 2004 with the aim of demonstrating that MD5 is practically insecure by finding a collision using a birthday attack.

SHA-1 produces a message digest based on principles similar to those used by Ronald L. Rivest of MIT in the design of

theMD4 and MD5 message digest algorithms, but has a more conservative design. The original specification of the

algorithm was published in 1993 under the title Secure Hash Standard, FIPS PUB 180, by U.S. government standards

agency NIST (National Institute of Standards and Technology). This version is now often namedSHA-0. It was withdrawn

by the NSA shortly after publication and was superseded by the revised version, published in 1995 in FIPS PUB 180-1

and commonly designated SHA-1. SHA-1 differs from SHA-0 only by a single bitwise rotation in the message schedule of

its compression function; this was done, according to the NSA, to correct a flaw in the original algorithm which reduced

its cryptographic security. However, the NSA did not provide any further explanation or identify the flaw that was

corrected. Weaknesses have subsequently been reported in both SHA-0 and SHA-1. SHA-1 appears to provide greater

resistance to attacks. SHA-2 is a set of cryptographic hash functions designed by the NSA (U.S. National Security

Agency).[3] SHA stands for Secure Hash Algorithm. Cryptographic hash functions are mathematical operations run on

digital data; by comparing the computed "hash" (the output from execution of the algorithm) to a known and expected

hash value, a person can determine the data's integrity. For example, computing the hash of a downloaded file and

http://www.ijergs.in.org/
http://ijergs.in:2095/cpsess5183353844/3rdparty/squirrelmail/src/compose.php?send_to=psk5000%40gmail.com
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ronald_Rivest
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/Hans_Dobbertin
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/RIPEMD-160
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/MD5CRK
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

Pa
ge

39

comparing the result to a previously published hash result can show whether the download has been modified or tampered

with.[4] A key aspect of cryptographic hash functions is their collision resistance: nobody should be able to find two

different input values that result in the same hash output.SHA-2 includes significant changes from its predecessor, SHA-1.

The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224,

SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.SHA-256 and SHA-512 are novel hash functions computed

with 32-bit and 64-bit words, respectively. They use different shift amounts and additive constants, but their structures are

otherwise virtually identical, differing only in the number of rounds. SHA-224 and SHA-384 are simply truncated

versions of the first two, computed with different initial values. SHA-512/224 and SHA-512/256 are also truncated

versions of SHA-512, but the initial values are generated using the method described in FIPS PUB 180-4. SHA-2 was

published in 2001 by the NIST as a U.S. federal standard (FIPS). The SHA-2 family of algorithms are patented in US

6829355. The United has released the patent under a royalty-free license. In 2005, an algorithm emerged for finding SHA-

1 collisions in about 2000-times fewer steps than was previously thought possible.[6]Although (as of 2015) no example of

a SHA-1 collision has been published yet, the security margin left by SHA-1 is weaker than intended, and its use is

therefore no longer recommended for applications that depend on collision resistance, such as digital signatures. Although

SHA-2 bears some similarity to the SHA-1 algorithm, these attacks have not been successfully extended to SHA-2. In

October 2012, the National Institute of Standards and Technology (NIST) chose the Keccak algorithm as the new SHA-3

standard. Keccak offers many benefits, such as performance and good resistance traits. In this article, I take a concise look

at Keccak's workings. I examine its engine and see how it renders the message text into a hash. In addition, I compare

Keccak against SHA-1 and SHA-2 using four standard tests. A notable problem with SHA-1 and SHA-2 is that they both

use the same engine, called Merkle-Damgard, to process message text. This means that a successful attack on SHA-1

becomes a potential threat on SHA-2.Consider SHA-1 for instance. A brute force attack usually takes at least 280 rounds

(a round is a single cycle of transformation of the interim hash value) to find a collision in a full-round SHA-1. But in

February 2005, Xiaoyun Wang and colleagues used a differential path attack to break a full-round SHA-1, and it took only

269 cycles to succeed. That same attack was later corroborated by Martin Cochran in August 2008.In 2012, Mark Stevens

used a series of cloud servers to perform a differential path attack on SHA-1. His attack produced a near-collision after

258.5 cycles. He also estimated a modified attack can manage a full-collision after 261 cycles. As to SHA-2, the only

successful attacks were those against a limited round SHA-2 hash. The most effective attack was against a 46-round SHA-

2 (512-bit variant) and against a 41-round SHA-2 (256-bit variant). It took 2253.6 cycles to break the 256-bit variant and

2511.5 cycles for the 512-bit variant. The fact remains that, while no successful attacks against a full-round SHA-2 have

been announced, there is no doubt that attack mechanisms are being developed in private. This is one reason why NIST

sponsored the SHA-3 competition, which led to the development and recent adoption of Keccak.

2. SHA3

 To be considered for the SHA-3 standard, candidate hash functions had to meet four conditions set by NIST. If a

candidate failed to meet these conditions, it was disqualified: The candidate hash function had to perform well regardless

of implementation. It should expend minimal resources even when hashing large amounts of message text. Many

proposed candidates were actually unable to meet this requirement. The candidate function had to be conservative about

https://en.wikipedia.org/wiki/SHA-2#cite_note-4
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
https://en.wikipedia.org/wiki/SHA-2#cite_note-6
https://en.wikipedia.org/wiki/Digital_signature

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

Pa
ge

40

security. It should withstand known attacks, while maintaining a large safety factor. It should emit the same four hash

sizes as SHA-2 (224-, 256-, 384-, or 512-bits wide), but be able to supply longer hash sizes if need be. The candidate

function had to be subjected to cryptanalysis. Both source code and analytical results were made public for interested

third-parties to review and comment. Any weaknesses found during analysis were to be addressed, through tweaks or

through redesign. The candidate function had to exercise code diversity. It could not use the Merkle-Damgard engine to

produce the message hash. The SHA-3 competition saw 51 candidate functions enter the first round of evaluations. Out of

those, 14 managed to advance to the second round. Round three saw the candidates whittled down to five. And from those

five, Keccak was declared the winner. Keccak is recognized as a new Secure Hash Algorithm-3 i.e. SHA-3 [3] announced

by NIST. Gilles Van Assche, Guido Bertoni, Michael Peeters and Joan Daemen designed and proposed the construction of

Keccak Hash function. The Keccak-f permutation is the basic component of Keccak Hash function and supports 224-bit,

256-bit, 384-bit and 512-bit hash variants. It consists of number of rounds and each round is the combination of logical

operations and bit permutations. Keccak is generated from sponge function with Keccak [r, c] members. It is categorized

by these additional functions i.e bit rate (r) and capacity (c). The addition of r + c gives width of the Keccak function

permutation and is it is further limited to values as indicated 25, 50, 100, 200, 400, 800, 1600. The Keccak team

introduced the Keccak [1600] function for SHA3 proposal with different values of ’r’ and ’c’. Keccak [1600] was selected

because of its increased number of rounds in order to provide improved security margin. For 256-bit hash value r = 1088

and c = 512. For 512-bit hash output, the values of r and c are 576 and 1024 respectively. The 1600-bit state matrix of

Keccak composed of 5x5 matrixes of 64-bit words. Initially, the message block should undergo the inversion procedure so

that last byte should come first and first byte should become last. Every single compression function of Keccak composed

of 24 rounds and each round is sub-divided into five steps i.e. Theta (Θ), Rho (ρ) and Pi (π), Chi (χ), Iota (i) explained in

below section

Theta (Θ) Step

Theta function comprises of three equations that involves simple XOR and bitwise cyclic shift operations. Equation (1)

involves the XOR operation between lanes (set composed of 64-bits along the constant x and y co-ordinates) of each row

of the state matrix A that results in five output lanes. Initially left circular shift will be applied on the five output lanes in

such a way that last lane becomes first and second last lane becomes last lane in (2). After that right circular shift will be

carried out on the lanes so that first lane becomes the last and second lane becomes the first lane and then left circular shift

will be applied on each lane in order to change the positions of the bits within each lane. Equation (3) of Theta just

involves XORing between the input state matrix and output lanes obtained from (2).

Theta step consists of three main steps in terms of equations that mainly require bitwise XOR operation. Equation (1)

involves bitwise XOR operation between the 64-bit lanes of each row where every lane of each row is independent of

each other so parallel operations can be applied on these lanes. We have used conventional 64-bit XOR operator in

parallel to perform XORing between the five lanes in each row of the state array ’A’ and results are stored in intermediate

registers. The above parallel XOR operations make our design fast and more efficient in terms of performance. Second

step (2) of step theta involves one bit left circular rotation which is accompanied by simple rewiring or replacing the bit

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

Pa
ge

41

pattern of each row, then XORed with the previous output lanes. The results are stored in an intermediate registers in the

form of five lanes. These lanes are again XORed with input state matrix A[x, y] to form new 5 x 5 state matrix A’[x,y].

All the operations are done on modulo 5.

Rho (ρ) and Pi (π) Step

The next two steps Rho (ρ) and Pi (π) can be expressed jointly by (4) that compute an auxiliary 5 x 5 array B from the

state array ’A’. The operation of Rho (ρ) and Pi (π) take each of the 25 lanes of the state array ’A’, perform circular

rotation on it by the fixed number of values depending upon the ’x’ and ’y’ co-ordinates i.e r[x, y] given in Table I [3]

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

Pa
ge

42

(called Rho (ρ) step) and then place the above rotated lanes at the different location in the new array B (called Pi (π) step).

Note that all the indices are taken modulo 5.

Chi (χ) Step

The Chi (χ) step operates on the lanes, i.e. words with 64-bits and manipulates the B array obtained in the previous Rho

(ρ) and Pi (π) step and replaces the result in the state array A. We can say that the Chi (χ) step takes the lane at location

[x,y] and XOR it with the logical AND of the lane at address location of [x+1,y] and the complement at location [x+2,y].

Following equation is illustrating the function Chi (χ).

Iota (i) Step

The Iota step is the simplest step of Keccak algorithm. It just performs the XOR operation of predefined 64-bit constant

RC given in [3] with the lane at location [0,0] of the new state matrix ’A’.

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

Pa
ge

43

In this work, we present an iterative design of SHA-3 512-bit for compact implementation as shown in Fig. The

architecture has 128-bit input data just to save extra input bits. The next block in proposed design is padder block which

pads the required number of zeros with the input data in order to form 1600-bit state and then inversion is applied on each

byte. The output from the padder block is forwarded to 2 x 1 Multiplexer (MUX) which drives the output data from

padder to the compression-box of the architecture and selects the input data for the first round and feedback data for other

twenty three rounds of Keccak with the help of controlling signal (Ctrl 1). When Ctrl 1 is low, MUX select the input data

and at high, MUX will select the feedback data. First padded message is directly copied to Reg A which previously

initialized with all zeroes and resulting bits are forward to Compression-Box (CBox). It is basically the implementation of

compression function in SHA-3 algorithm which comprises of theta (Θ), rho (ρ), pi (π), chi (χ) and iota (i) step. For

performance, we logically optimized our design by implementing rho (ρ), pi (π) and chi (χ) steps as a single step. This

results in saving of hardware resources in term of 48 slices. After completing 48 iterations, final output is forwarded to

Reg B for storage in order to synchronize the data-path. The last component in the architecture is Truncating component

where inversion per byte is performed on the output bits and then truncated to the desired length of hash output.

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

Pa
ge

44

128bitkeccak sequential architecture

3. Simulation Waveforms

4. Conclusion

The SHA 3 algorithm provides a good security for the data using the authentication format by generating hash code. Our

logical optimization by merging the three transforms i.e. rho, pi and chi in to single transform and by exploring maximum

parallelism in the algorithm are contributing factor And the whole design has a simple hardware structure and fast running

speed and can be widely used in digital signatures and 3DES key generation systems.

 Parshetty Santhosh Kumar, et al. International Journal of Engineering Research and Generic Science (IJERGS)

© IJERGS, All Rights Reserved.

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

Pa
ge

45

5. References

[1].X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4, md5, haval-128 and ripemd,” IACR,

August 2004.

[2]. National Institute of Standards and Technology (nist), “Cryptographic hash algorithm competition,” 2007.

[3]. FIPS-202, “Federal information processing standards publication fips-202, secure hash algorithm-3 (sha-3),” 2014.

[4]. Xilinx, “Virtex 2.5 V field programmable gate arrays”. [5] F.R. Henrquez, A.D. Prez, N.A. Saqib, and C.K. Koc,

Cryptographic Algorithms on Reconfigurable Hardware. Signals and Communication Technology, Springer, 2007.

[6]. S. Kerckhof, F. Durvaux, N.V. Charvillon, F. Regazzoni, G.M. de Dormale, and F.X. Standaert, “compact fpga

implementations of the five sha-3 finalists,” Springer Berlin Heidelberg, vol. 7079, pp. 217–233, 2011.

[7]. A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient hardware implementations of high throughput sha-3 candidates

keccak, luffa and blue mid night wish for single- and multi-message hashing,” ACM, pp. 168–177, 2010.

[8]. K. Gaj, E. Homsirikamol, and M. Rogawski, “Comprehensive comparison of hardware performance of fourteen

round 2 sha-3 candidates with 512-bit outputs using field programmable gate arrays,” 2ndSHA-3 Candidate Conference,

pp 23-24, August 2010.

[9]. B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. ONeill, and W.P. Marnane, “FPGA implementations of

the round two sha-3 candidates,” The second SHA-3 Candidate Conference, 2010.

	2. sha3
	3. Simulation Waveforms
	4. Conclusion
	5. References

