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Abstract   
This paper is devoted to the basic analogues of fractional differentiation of classical functions and a theorem on term by 
term basic analogues of fractional differentiation has been derived. 
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1. Introduction  

Fractional Calculus is a field of applied mathematics that deals with derivatives and   integrals of arbitrary orders. During 

the last three decades Fractional Calculus has been applied to almost every field of Mathematics like Special Functions 

etc., Science, Engineering and Technology. Many applications of Fractional Calculus can be found in Turbulence and 

Fluid Dynamics, Stochastic dynamical System, Plasma Physics and Controlled Thermonuclear Fusion, Non-linear Control 

Theory, 

2. Definition1.The fractional q-differential operator of order  α is defined as follows 
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Where Re .0)( <α  

As a particular case of (1.1), we have 
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The Wright generalized hyper geometric function is given by Kilbas (2005) [4] ( )zqpΨ  
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3. Main Results 

In this section we shall prove a theorem on term by term fractional q-differentiation of a power series.  

Theorem 1: If the series ∑
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provided Re 1q0 0, )( Re  ,0)( <<<> µλ . 

Proof: In view of (1.3), we have 
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Now the following observations are made  
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Converges absolutely and therefore uniformly in domain of x over the region of integration. 
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Therefore the order of integration and summation can be interchanged in (1.3) to obtain 
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This proves the theorem (1.4) 

4. Special Cases 

Let us consider some special cases of above result: 

(i) If we put  
βµ

α
ρ === jjm ,1,1

 in (1.4), we get   
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Which is the fractional q- derivative of generalized Mittag-Leffler function denoted by )(, zE βα . 

(ii) If we take m = 2, an = 1 in (1.4)it reduces to  
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Which is the fractional q-derivative of the function shown by Dzrbashjan [2]that it is an entire function of order? 
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Which is the fractional q- derivative of Mittag-Leffler function denoted by )(zEα . 
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