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Abstract

We propose an extended versions are presented that elaborates the effect of the design’s degrees of freedom, and the effect
on non uniformity of input patterns on energy consumption and the performance. The proposed architecture is based on a
recently refined sparse clustered networks using binary connections that on-average eliminates most of the parallel
comparisons performed during a search. Given an input tag, the proposed architecture computes a few possibilities for the
location of the matched tag and performs the comparisons on them to locate a single valid match. And also by using a
reordered overlapped search mechanism, most mismatches can be found by searching a few bits of a search word.
Following a selection of design parameters, such as the number of CAM entries, the energy consumption and the search
delay of the proposed design are 8%, and 26% of that of the conventional NAND architecture, respectively, with a 10%
area overhead.

Key Words: Associative memory, content-addressable memory (CAM), low-power computing, recurrent neural
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1. Introduction

A content addressable memory (CAM) is a type of memory that can be accessed using its contents rather than an explicit
address. In order to access a particular entry in such memories, a search data word is compared against previously stored
entries in parallel to find a match. Each stored entry is associated with a tag that is used in the comparison process. Once a
search data word is applied to the input of a CAM, the matching data word is retrieved within a single clock cycle if it
exists. This prominent feature makes CAM a promising candidate for applications where frequent and fast look-up
operations are required, such as in translation look-aside buffers (TLBs) , network routers, database accelerators, image
processing, parametric curve extraction, Hough transformation , Huffman coding/decoding, virus detection, Lempel-Ziv
compression, and image coding. Due to the frequent and parallel search operations, CAMs consume a significant amount
of energy. CAM architectures typically use highly capacitive search lines (SLs) causing them not to be energy efficient
when scaled. For example, this power inefficiency has constrained TLBs to be limited to no more than 512 entries in
current processors. In Hitachi SH-3 and Strong ARM embedded processors, the fully associative TLBs consume about
15% and 17% of the total chip power, respectively. Consequently, the main research objective has been focused on
reducing the energy consumption without compromising the throughput. Energy saving opportunities have been
discovered by employing either circuit-level techniques, architectural-level techniques.

A new family of associative memories based on sparse clustered networks (SCNs) has been recently introduced and
implemented using field-programmable gate arrays (FPGAs). Such memories make it possible to store many short
messages instead of few long ones as in the conventional Hopfield networks with significantly lower level of
computational complexity. Furthermore, a significant improvement is achieved in terms of the number of information bits
stored per memory bit (efficiency).
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Fig.1. Simple example of a 4 x 4 CAM array consisting of the CAM cells, MLs, sense amplifiers, and differential SLs is
divided into several equally sized sub-blocks, which can be activated independently.
For a previously trained network and given an input tag, the classifier only uses a small portion of the tag and predicts
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very few sub-blocks of the CAM to be activated. Once the sub-blocks are activated, the tag is compared against the few
entries in them while keeping the rest deactivated and thus lowers the dynamic energy dissipation.

2. CAM Review

In a conventional CAM array, each entry consists of a tag that, if matched with the input, points to the location of a data
word in a static random access memory (SRAM) block. The actual data of interest are stored in the SRAM and a tag is
simply a reference to it. Therefore, when it is required to search for the data in the SRAM, it suffices to search for its
corresponding tag. Consequently, the tag may be shorter than the SRAM-data and would require fewer bit comparisons.
An example of a typical CAM array, consisting of four entries having 4 bits each, is shown in Fig. 1. A search data
register is used to store the input bits. The register applies the search data on the differential SLs, which are shared among
the entries. Then, the search data are compared against all of the CAM entries. Each CAM-word is attached to a common
match line (ML) among its constituent bits, which indicates, whether or not, they match with the input bits. Since the MLs
are highly capacitive, a sense amplifier is typically considered for each ML to increase the performance of the search
operation.

A BCAM cell is typically the integration of a 6-transistor (6T) SRAM cell and comparator circuitry. The comparator
circuitry is made out of either an XNOR or an XOR structure, leading to a NAND-type or a NOR-type operation,
respectively. The selection of the comparing structure depends on the performance and the power requirements, as a
NAND-type operation is slower and consumes less energy as opposed to that of a NOR type.

[

Fig.2.The schematic of two types of typical BCAM cells.
In a NAND-type CAM, the MLs are precharged high during the precharge phase. During the evaluation phase, in the case
of a match, the corresponding ML is pulled down though a series of transistors [M5 in Fig. 2(b)] performing a login
NAND in the comparison process. In a NOR-type CAM [Fig. 2(a)], the MLs are also precharged high during the
precharge phase. However, during the evaluation phase, all of the MLs are pulled down unless there is a matched entry
such that the pull-down paths M3 — M4 and M5 — M6 are disabled. Therefore, a NOR-type CAM has a higher switching
activity compared with that of a NAND type since there are typically more mismatched entries than the matched ones.
3. Related Work
Energy reduction of CAMs employing circuit-level techniques are mostly based on the following strategies: 1) reducing
the SL energy consumption by disabling the precharge process of SLs when not necessary and 2) reducing the ML
precharging, for example, by segmenting the ML, selectively precharging the first few segments and then propagating the
precharge process if and only if those first segments match. This segmentation strategy increases the delay as the number
of segments is increased. A hybrid-type CAM integrates the low-power feature of NAND type with the high-performance
NOR type while similar to selective precharging method, the ML is segmented into two portions. The high-speed CAM
designed in 32-nm CMOS achieves the cycle time of 290 ps using a swapped CAM cell that reduces the search delay
while requiring a larger CAM cell (11-transistors) than a conventional CAM cell [9-transistors (9T)] used in SCN-CAM.
A high-performance AND-type match-line scheme is proposed in [32], where multiple fan-in AND gates are used for low
switching activity along with segmented-style match-line evaluation to reduce the energy consumption.
The precomputation-based CAM (PB-CAM) divides the comparison process and the circuitry into two stages. First, it
counts the number of ones in an input and then compares the result with that of the entries using an additional CAM
circuit that has the number of ones in the CAM-data previously stored. This activates a few MLs and deactivates the
others. In the second stage, a modified CAM hierarchy is used, which has reduced complexity, and has only one pull-
down path instead of two compared with the conventional design. The modified architecture only considers 0 mismatches
instead of full comparison since the 1s have already been compared. The number of comparisons can be reduced to M x L)
_log (N +2)_+ (M x N)/(N + 1) bits, where M is the number of entries in the CAM and N is the number of bits per entry. N
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In the proposed design, we demonstrate how it is possible to reduce the number of comparisons to only N bits.
Furthermore, in PB-CAM, the increase of the tag length affects the energy consumption, the delay, and also complicates
the precomputation stage.

4. SCN-CAM Algorithm
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Fig. 3. Top level block diagram of SCN-CAM.
As shown in Fig. 3, the proposed architecture (SCN-CAM) consists of an SCN-based classifier, which is connected to a
special-purpose CAM array. The SCN-based classifier is at first trained with the association between the tags and the
address of the data to be later retrieved.
The proposed CAM array is based on a typical architecture, but is divided into several sub-blocks that can be compare-
enabled independently. Therefore, it is also possible to train the network with the association between the tag and each
CAM sub-block if the number of desired sub-blocks is known. However, in this paper, we focus on a generic architecture
that can be easily optimized for any number of CAM sub-blocks. Once an input tag is presented to the SCN-based
classifier, it predicts which CAM sub-block(s) need to be compare-enabled and thus saves the dynamic power by
disabling the rest. Disabling a CAM sub-block avoids charging its highly capacitive SLs, while applying the search data,
and also turns the precharge path off for the MLs.
A. SCN-Based Classifier
SCN-Based Classifier is used for either training or decoding purposes, the input tag is reduced in length to g bits, and then
divided into c equally.
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Fig. 4. Representation of the proposed SCN-CAM.

As shown in Fig. 4, an SCN-based classifier consists of two parts: 1) P, and 2) P,. The neurons in P, are binary,
correspond to the input tags, and are grouped into ¢ equally sized clusters with | neurons in each. Processing of an input
tag in the SCN-based classifier is for either of the two situations: training or decoding. In this classifier, either for training
or decoding purposes, the input tag is reduced in length to q bits, and then divided into ¢ equally sized partitions of length
x bits each. Each partition is then mapped to the index of a neuron in its corresponding cluster in Py, using a direct binary-
to-integer mapping from the tag portion to the index of the neuron to be activated. Thus, | = 2* . If | is a given parameter,
the number of clusters is calculated to be ¢ = g/ log; (I).
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B. Tag-Length Reduction

Given the input tags, the number of bits in the reduced-length tag, q, determines the number of possible ambiguities in Py,.
The generated ambiguities can be corrected with additional comparisons to find the exact match in the CAM. Therefore,
no errors are produced in determining the matched result(s).

5. Circuit Implementation

In order to implement a circuit that can elaborate the benefit of the proposed algorithm, a set of design points were
selected among 15 different parameter sets with the common goal of discovering the minimum energy consumption per
search, while keeping the silicon-area overhead and the cycle time reasonable.
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Fig. 5. Relationship between the length of the truncated tag (q), the number of matched entries in SCN-CAM (1), and the
estimated matching probability (P (1)) for M =512,

Fig. 5 shows simulations results on how it is possible to reduce the estimated number of required comparisons by
increasing g. It is interesting to note that the number of clusters in Pl does not affect the number of neurons.

A drawback of such methods, unlike SCN-CAM, is that as the length of the tags is increased, the cycle time and the
circuit complexity of the precomputation stage are dramatically increased.

A. SCN-CAM: Architecture of SCN-Based Classifier

The SCN-based classifier in SCN-CAM architecture generates the compare-enable signal(s) for the CAM sub-blocks
attached to it. The architecture of the SCN-based classifier is shown in Fig. 6. It consists of ¢ x -to-1 one-hot decoders, ¢
SRAM modules of size | x M each, M c—input AND gates, M/{ { —input OR gates, and M/ 2-input NAND gates. Each
row of an SRAM module stores the connections from one tag to its corresponding output neuron. Each reduced-length tag
of length q is thus divided into ¢ subtags of « bits each, where each subtag creates the row address of each SRAM module.
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Fig.6. Simplified SCN-CAM architecture.

B. SCN-CAM: CAM Architecture
In order to exploit the prominent feature of the SCN-based associative memory, a conventional CAM array is divided L~
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into sufficient number of compare-enabled sub-blocks such that: 1) the number of sub-blocks are not too many to
expand the layout and to complicate the interconnections and 2) the number of sub-blocks should not be too few to be
able to exploit to energy-saving opportunity with the SCN-based classifier. Fig.7 shows the simplified array
organization for CAM architecture.
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Fig .7.Simplified array organization of the proposed CAM architecture.
6. Circuit Evaluation
A complete circuit for SCN-CAM was implemented and simulated using HSPICE and TSMC 65-nm CMOS technology
according to design parameters, including full dimensions of CAM arrays, SRAM arrays, logical gates, and extracted
parasitics from the wires in the physical layout.
Fig. 8 shows the cycle time is measured by the maximum reliable frequency of operation in the worst-case cycle time (SS)
scenario. The required silicon area of SCN-CAM is estimated to be 10.1% larger than that of the conventional NAND-
type counterpart mainly due to the existence of the gaps between the SRAM blocks of the SCN-based classifier.
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PR’ PF-CDPD’ Hybnd STOS™ HS-WA Ret. Ret. Proposed
[16] [33] [12) [15] (] NAND NOR
Conliguration 128 % 30 | 236x128 128432 2364141 | 128128 | 5124128 | 512,128 | 512128
CAM type BCAM BCAM BCAM BCAM BCAM BCAM | BCAM | BCAM
Cell type | Nor NAND | NANDNOR | NAND | NAND-NOR | NAND NOR NOR
Technalogy 0.35 pan | D18 pan 018 jean 90 s 32w 65 ran 65 63 mn
Cycle ume [ns] 10 210 0.60 1.339 0.145 21 0.5 0.60
Scaled ['LT‘I);‘]"C time 0,563 1363 039 0982 0.295 210 0.50 060
“_NE]_':EE;CM 6 233 . 1.30 0.162 1070 . 1040 1910 0.078
Scaled energy 2112 0.256 0.145 0.117 2173 104 191 0.078
[f1/bit/search]

'_ Measwrement results (without pads).
** The cycle time of this CAM, unlike SCN-CAM, is affecled by 5.25 in a non-uniform distribution scenario of the input patems.

Table 1: Simulation Results.
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8. Conclusion

The proposed architecture (SCN-CAM) employs a novel associativity mechanism based on a recently developed family of
associative memories based on SCNs.

SCN-CAM s suitable for low-power applications, where frequent and parallel look-up operations are required. SCN-
CAM employs an SCN-based classifier, which is connected to several independently compare-enabled CAM sub-blocks,
some of which are enabled once a tag is presented to the SCN-based classifier. By using independent nodes in the output
part of SCN-CAM’s training network, simple and fast updates can be achieved without retraining the network entirely.
The nonuniform inputs may result in higher power consumptions, but does not affect the accuracy of the final result. In
other words, a few false-positives may be generated by the SCN-based classifier, which are then filtered by the enabled
CAM sub-blocks. Therefore, no false-negatives are ever generated.

Conventional NAND-type and NOR-type architectures were also implemented in the same process technology to compare
SCN-CAM against, along with other recently developed CAM architectures. It has been estimated that for a case study
design parameter, the energy consumption and the cycle time of SCN-CAM are 8.02%, and 28.6% of that of the
conventional NAND-type architecture, respectively, with a 10.1% area overhead. Future work includes investigating
sparse compression techniques for the matrix storing the connections in order to further reduce the area overhead.
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